Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T20:21:11.720Z Has data issue: false hasContentIssue false

The human anion transport protein, band 3, contains a CD36-like binding domain for Plasmodium falciparum-infected erythrocytes

Published online by Cambridge University Press:  06 April 2009

I. Crandall
Affiliation:
Department of Biology, University of California, Riverside, California 92521, USA
I. W. Sherman
Affiliation:
Department of Biology, University of California, Riverside, California 92521, USA

Summary

Epitope mapping of a murine monoclonal antibody (mAb), 5H12, prepared against live Plasmodium falciparum-intected red blood cells indicated that the epitope consisted of amino acid residues 474–487 of the human anion transport protein, band 3. mAb 5H12 enhanced cytoadherence, but inhibited the CD36-like mediated resetting. A synthetic peptide based on the sequence of the epitope (FSFCETNGLE) blocked both resetting and cytoadherence, suggesting that this amino acid sequence may form the CD36-like receptor. The CD36-like region of band 3 was antigenically distinct from platelet or endothelial CD36.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aikawa, M., Rabbege, J. R., Udeinya, U. & Miller, L. H. (1983). Electron microscopy of knobs in Plasmodium falciparum-infected erythrocytes. Journal of Parasitology 69, 435–7.CrossRefGoogle ScholarPubMed
Baruch, D. I., Pasloske, B. L., Singh, H. B., Bi, X., Ma, X. C, Feldman, M., Taraschi, T. F. & Howard, R. J. (1995). Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82, 7787.CrossRefGoogle Scholar
Barnwell, J. W., Asch, A. S., Nachman, R. L., Yamada, M., Aikawa, M. & Ingravallo, P. (1989). A human 88 kDa membrane glycoprotein (CD36) functions in vitro as a receptor for a cytoaderence ligand on Plasmodium falciparum-infected erythrocytes. Journal of Clinical Investigation 84, 765–72.CrossRefGoogle Scholar
Biggs, B. A., Kemp, D. J. & Brown, G. V. (1989). Subtelomeric chromosome deletions in field isolates of Plasmodium falciparum and their relationship to loss of cytoadherence in vitro. Proceedings of the National Academy of Sciences, USA 86, 2428–32.CrossRefGoogle ScholarPubMed
Crandall, I., Smith, H. & Sherman, I. W. (1991). Plasmodium falciparum: the effect of pH and Ca2+ concentration on the in vitro cytoadherence of infected erythrocytes to amelanotic melanoma cells. Experimental Parasitology 73, 362–8.CrossRefGoogle ScholarPubMed
Crandall, I., Collins, W. E., Gysin, J. & Sherman, I. W. (1993). Synthetic peptides based on motifs present in human band 3 protein inhibit cytoadherence/sequestration of Plasmodium falciparum (human malaria). Proceedings of the National Academy of Sciences, USA 90, 4703–7.CrossRefGoogle Scholar
Crandall, I. E. & Sherman, I. W. (1994 a). Cytoadherence-related neoantigens on Plasmodium falciparum (human malaria)-infected human erythrocytes result from the exposure of normally cryptic regions of the band 3 protein. Parasitology 108, 257–67.CrossRefGoogle ScholarPubMed
Crandall, I. E. & Sherman, I. W. (1994 b). Antibodies to synthetic peptides based on band 3 motifs react specifically with Plasmodium falciparum (human malaria)-infected erythrocytes and block cytoadherence. Parasitology 108, 389–96.CrossRefGoogle ScholarPubMed
Crandall, I., Guthrie, N., Demers, D. & Sherman, I. W. (1994 a). Plasmodium falciparum: CD36 dependent cytoadherence or rosetting of infected erythroyctes is modulated by knobs. Cell Adhesion and Communication 2, 503–10.CrossRefGoogle ScholarPubMed
Crandall, I., Land, K. M. & Sherman, I. W. (1994 b). Plasmodium falciparum: Pfalhesin and CD36 form an adhesin/receptor pair that is responsible for the pH dependent portion of cytoadherence/sequestration. Experimental Parasitology 78, 203–9.CrossRefGoogle Scholar
Crandall, I., Guthrie, N. & Sherman, I. W. (1995). Plasmodium falciparum: sera of individuals living in a malaria-endemic region recognize peptide motifs of the human erythrocyte anion transport protein. American Journal of Tropical Medicine and Hygiene 52, 450–5.CrossRefGoogle Scholar
Geysen, H. M., Rodda, S. J., Mason, T. J., Tribbick, G. & Schoofs, P. G. (1987). Strategies for epitope analysis using peptide synthesis. Journal of Immunological Methods 102, 259–74.CrossRefGoogle ScholarPubMed
Gruenberg, J., Allred, D. R. & Sherman, I. W. (1983). Scanning electron microscope-analysis of the protrusions (knobs) present on the surface of Plasmodium falciparum-infected erythrocytes. Journal of Cell Biology 97, 795802.CrossRefGoogle ScholarPubMed
Guthrie, N., McK. Bird, D., Crandall, I. & Sherman, I. W. (1995). Plasmodium falciparum: The adherence of erythrocytes infected with human malaria can be mimicked using pfalhesin-coated microspheres. Cell Adhesion and Communication 5.Google Scholar
Handunnetti, S. M., Van Schravendijk, M. R., Hasler, T., Barnwell, J. W., Greenwalt, D. E. & Howard, R. J. (1992 a). Involvement of CD36 on erythrocytes as a resetting receptor for Plasmodium falciparum-infected erythrocytes. Blood 80, 2097–104.CrossRefGoogle Scholar
Handvnnetti, S. M., Hasler, T. H. & Howard, R. J. (1992 b). Plasmodium falciparum infected erythrocytes do not adhere well to C32 melanoma cell or CD36 unless rosettes with uninfected erythrocytes are first disrupted. Infection and Immunity 60, 928–32.CrossRefGoogle Scholar
Iqbal, J., Siddique, A. B., Ahlborg, N., Perlmann, P. & Berzins, K. (1995). Cytoadherence-related homologous motifs in Plasmodium falciparum antigen Pf155/RESA and erythrocyte band 3 protein. Parasitology 110, 503–11.CrossRefGoogle ScholarPubMed
Lambros, C. & Vanderberg, J. P. (1980). Synchronization of Plasmodium falciparum erythrocytic stages in culture. Journal of Parasitology 65, 418–20.CrossRefGoogle Scholar
Leech, J. H., Barnwell, J. W., Miller, L. H. & Howard, R. J. (1984). Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes. Journal of Experimental Medicine 159, 1567–75.CrossRefGoogle ScholarPubMed
Lux, S. E., John, K. M., Kopito, R. R. & Lodish, H. F. (1989). Cloning and characterization of band 3, the human erythrocyte anion-exchange protein (AE1). Proceedings of the National Academy of Sciences, USA 86, 9089–93.CrossRefGoogle ScholarPubMed
MacPherson, G. G., Warrell, M. J., White, N. J., Looareesuwan, S. & Warrell, D. (1985). Human cerebral malaria: a quantitative ultrastructural analysis of parasitized erythrocyte sequestration. American Journal of Pathology 119, 385401.Google ScholarPubMed
Paulitschke, M., Nash, G. B., Anstee, D. J., Tanner, M. J. A. & Gratzer, W. B. (1995). Perturbation of red blood cell membrane rigidity by extracellular ligands. Blood 86, 342–8.CrossRefGoogle ScholarPubMed
Reithmeier, R. A. (1994). Mammalian exchangers and co-transporters. Current Opinion in Cell Biology 6, 583–94.CrossRefGoogle ScholarPubMed
Su, X., Heatwole, V., Wertheimer, S., Guinet, F., Herrfeldt, J., Peterson, D., Ravetch, J. & Wellems, T. (1995). The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82, 84100.CrossRefGoogle ScholarPubMed
Tanner, M. J. A., Martin, P. G. & High, S. (1988). The complete amino acid sequence of the human erythrocyte membrane anion-transport protein deduced from the cDNA sequence. The Biochemical Journal 256, 703–12.CrossRefGoogle ScholarPubMed
Tracer, W. & Jensen, J. B. (1976). Human malaria parasites in continuous culture. Science 193, 673–5.Google Scholar
Udeinya, I., Schmidt, J. A., Aikawa, M., Miller, L. H. & Green, I. (1981). Falciparum malaria-infected erythrocytes specifically bind to cultured human endothelial cells. Science 213, 555–7.CrossRefGoogle ScholarPubMed
Van Schravendijk, M. R., Handunnetti, S. M., Barnwell, J. W. & Howard, R. J. (1992). Normal human erythrocytes express CD36, an adhesion molecule of monocytes, platelets, and endothelial cells. Blood 80, 2105–14.CrossRefGoogle ScholarPubMed
Wahlgren, M., Fernandez, V., Scholander, C. & Carlson, J. (1994). Resetting. Parasitology Today 10, 73–9.CrossRefGoogle Scholar