Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T02:19:37.976Z Has data issue: false hasContentIssue false

Hymenolepis diminuta: protein synthesis in cysticercoids

Published online by Cambridge University Press:  06 April 2009

S. A. Jeffs
Affiliation:
Parasitology Research Laboratory, Department of Biological Sciences, University of Keele, Keele, Staffs. ST5 5BG
C. Arme
Affiliation:
Parasitology Research Laboratory, Department of Biological Sciences, University of Keele, Keele, Staffs. ST5 5BG

Summary

Incorporation of four amino acids into protein by stage V cysticercoids of Hymenolepis diminuta occurred in the order leucine > phenylalanine > alanine > proline. Leucine incorporation was apparently linear over a 5 h period in contrast to uptake which was non-linear over the same time. Pre-incubation in sugars did not affect protein synthesis but incorporation was inhibited by cycloheximide. Uptake and incorporation of leucine by stage III cysticercoids exceeded that of stage V metacestodes and the 10-day-old adult worm.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agosin, M. & Naquira, C. (1978). Translation of Taenia crassiceps mRNA in cell-free heterologous systems. Comparative Biochemistry and Physiology 60B, 183–7.Google Scholar
Agosin, M. & Repetto, Y. (1967). Studies on the metabolism of Echinococcus granulosus IX. Protein synthesis in scolices. Experimental Parasitology 21, 195208.CrossRefGoogle Scholar
Barrett, J. (1981). Biochemistry of Parasitic Helminths. London: Macmillan.CrossRefGoogle Scholar
Bolla, R. I. & Roberts, L. S. (1971). Developmental physiology of cestodes X. The effect of crowding on carbohydrate levels and on RNA, DNA and protein synthesis in Hymenolepis diminuta. Comparative Biochemistry and Physiology 40 A, 777–87.CrossRefGoogle ScholarPubMed
Chappell, L. H. & Read, C. P. (1973). Studies on the free pool of amino acids in the cestode Hymenolepis diminuta. Parasitology 64, 161–72.Google Scholar
Culbreth, K. L., Esch, G. W. & Kuhn, R. E. (1972). Growth and development of larval Taenia crassiceps (Cestoda) III. The relationship between larval biomass and the uptake and incorporation of 14C-leucine. Experimental Parasitology 32, 272–81.CrossRefGoogle Scholar
Fisher, F. M. Jr. & Read, C. P. (1971). Transport of sugars in the tapeworm Calliobothrium verticillatum. Biological Bulletin Marine Laboratory, Woods Hole 140, 4662.CrossRefGoogle ScholarPubMed
Gordon, R. & Webster, J. M. (1972). Nutritional requirements for protein synthesis during parasitic development of the entomophilic nematode Mermis nigrescens. Parasitology 64, 161–72.CrossRefGoogle ScholarPubMed
Harpur, R. P. & Jackson, D. M. (1975). Intestine of Ascaris: oxygen consumption, fermentation acids and anaerobic synthesis of protein. Journal of Parasitology 61, 808–14.CrossRefGoogle ScholarPubMed
Harris, B. G. (1983). Protein metabolism. In Biology of the Eucestoda vol. 2 (ed. Arme, C. and Pappas, P. W.). pp. 335–41. New York and London: Academic Press. (In the Press.)Google Scholar
Harris, B. G. & Read, C. P. (1969). Factors affecting protein synthesis in Hymenolepis diminuta (Cestoda). Comparative Biochemistry and Physiology 28, 645–54.CrossRefGoogle ScholarPubMed
Jaffe, J. J. & Doremus, H. M. (1970). Metabolic patterns of Dirofilaria immitis microfilariae in vitro. Journal of Parasitology 56, 254–60.CrossRefGoogle ScholarPubMed
MacInnis, A. J., Graffe, D. J., Kilejian, A. A. & Read, C. P. (1976). Specificity of amino acid transport in the tapeworm Hymenolepis diminuta and its rat host. Rice University Studies 62, 183204.Google Scholar
Naquira, C., Paulin, J. & Agosin, M. (1977). Taenia crassiceps: protein synthesis in larvae. Experimental Parasitology 41, 359–69.CrossRefGoogle ScholarPubMed
Parker, R. D. Jr. & MacInnis, A. J. (1977). Hymenolepis diminuta: isolation, purification and reconstruction in vitro of a cell-free system for protein synthesis. Experimental Parasitology 41, 216.CrossRefGoogle ScholarPubMed
Prescott, D. M. & Voqe, M. (1959). Autoradiographic study of the synthesis of ribonucleic acid in cysticercoids of Hymenolepis diminuta. Journal of Parasitology 45, 587–90.CrossRefGoogle ScholarPubMed
Read, C. P., Rothman, A. H. & Simmons, J. E. Jr. (1963). Studies on membrane transport with special reference to parasite-host integration. Annals of the New York Academy of Sciences 113, 154205.CrossRefGoogle ScholarPubMed
Voge, M. & Heyneman, D. (1957). Development of Hymenolepis nana and Hymenolepis diminuta (Cestoda: Hymenolepidae) in the intermediate host Tribolium confusum. University of California Publications in Zoology 59, 549–79.Google Scholar
von Brand, T. (1979). Biocheriiistry and Physiology of Endoparasites. Amsterdam: Elsevier/North Holland Biomedical Press.Google Scholar
Walker, E. & Chappell, L. H. (1980). Schistosoma mansoni: comparison of the effects of cycloheximide and emetine on protein synthesis in adult worms. Comparative Biochemistry and Physiology 67C, 129–34.Google Scholar
Walker, E. & Chappell, L. H. (1982). Schistosoma mansoni: In vitro uptake and incorporation of glycine by adult worms. Comparative Biochemistry and Physiology 73B, 385–92.Google Scholar
Wheatley, D. N. & Robertson, J. H. (1981). Uptake and incorporation of amino acids by suspension cultured mammalian cells: a comparative study involving eleven naturallyoccurring and four analogue amino acids. Cytobios 30, 101–26.Google Scholar