Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T04:55:40.975Z Has data issue: false hasContentIssue false

Long-term dynamics of natural populations of Schistosoma mansoni among Rattus rattus in patchy environment

Published online by Cambridge University Press:  06 April 2009

A. Théron
Affiliation:
Laboratoire de Biologie Animale, URA CNRS 698, Centre de Biologie et d'ecologie tropicale et méditerranéenne, Université 52, Av. de Villeneuve, 66860 Perpignan Cedex, France
J. P. Pointier
Affiliation:
Laboratoire de Biologie Marine et Malacologie, Centre de Biologie et d'ecologie tropicale et méditerranéenne, Ecole Pratique des Hautes Etudes, 52, Av. de Villeneuve, 66860 Perpignan Cedex, France
S. Morand
Affiliation:
Laboratoire de Biologie Animale, URA CNRS 698, Centre de Biologie et d'ecologie tropicale et méditerranéenne, Université 52, Av. de Villeneuve, 66860 Perpignan Cedex, France
D. Imbert-Establet
Affiliation:
Laboratoire de Biologie Animale, URA CNRS 698, Centre de Biologie et d'ecologie tropicale et méditerranéenne, Université 52, Av. de Villeneuve, 66860 Perpignan Cedex, France
G. Borel
Affiliation:
Laboratoire de Biologie, Centre Régional Hospitalo-Universitaire de Pointe à Pitre, BP 465, 97159 Pointe à Pitre, Guadeloupe

Summary

Dynamics of natural populations of Schistosoma mansoni were studied during 8 consecutive years among Rattus rattus populations from 8 transmission sites of the marshy forest focus of Guadeloupe (French West Indies). The schistosome population is over-dispersed (k = 0·119) within the murine hosts and ecological factors linked to the patchy environment may be responsible for such aggregated distribution. Analysis of the spatio-temporal variations in prevalences, intensities and abundances showed limited variations of the infection during the 8 years at the level of the whole parasite population but great spatial heterogeneity at the level of local schistosome populations. Inter-populational genetic variability linked to the degree of adaptation of this human parasite to the murine host may explain differences in transmission dynamics between the local populations of S. mansoni.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. M. (1974). Mathematical models of host–helminth parasite interaction. In Ecology Stability, (ed. Usher, M. B. & Williamson, M. H.), pp. 4370. London: Chapman & Hall.CrossRefGoogle Scholar
Anderson, R. M. (1978). The regulation of host population growth by parasitic species. Parasitology 76, 119–57.CrossRefGoogle ScholarPubMed
Anderson, R. M. & Gordon, D. M. (1982). Process influencing the distribution of parasite numbers within host populations with special emphasis on parasite-induced host mortalities. Parasitology 85, 373–98.CrossRefGoogle ScholarPubMed
Anderson, R. M. & May, R. M. (1985). Helminth infection of humans: mathematical models, population dynamics and control. Advances in Parasitology 24, 1101.CrossRefGoogle ScholarPubMed
Bliss, C. I. (1953). Fitting the negative binomial distribution to biological data. Biometrics 9, 176200.CrossRefGoogle Scholar
Bradley, D. J. & May, R. M. (1978). Consequences of helminth aggregation for the dynamics of schistosomiasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 72, 262–73.CrossRefGoogle ScholarPubMed
ChassÉ, J. L. & Théron, A. (1988). An example of circular statistics in chronobiological studies: analysis of polymorphism in the emergence rhythms of Schistosoma mansoni cercariae. Chronobiology International 5, 433–9.CrossRefGoogle ScholarPubMed
Combes, C. & Delattre, P. (1981). Principaux paramètres de l'infestation des rats (Rattus rattus et Rattus norvegicus) par Schistosoma mansoni dans un foyer de schistosomose intestinale de la région caraïbe. Acta Oecologica Applicata 2, 6379.Google Scholar
Combes, C., Leger, N. & Golvan, Y. J. (1975). Le rôle du rat dans la dynamique de l'endémie schistosomienne en Guadeloupe. Comptes Rendus de l'académie des Sciences de Paris, ser. D 281, 1059–61.Google ScholarPubMed
Crofton, H. D. (1971). A model of host–parasite relationships. Parasitology 63, 343–64.CrossRefGoogle Scholar
Delattre, P. & Lelouarn, H. (1981). Dynamique des populations du rat noir, Rattus rattus, en mangrove lacustre. Mammalia 45, 275–88.CrossRefGoogle Scholar
Duvall, R. H. & Dewitt, W. B. (1967). An improved perfusion technique for recovering adult schistosomes from laboratory animals. American Journal of Tropical Medicine and Hygiene 16, 483–6.CrossRefGoogle ScholarPubMed
Gilpin, M. & Hanskii, I. (1991). Metapopulation dynamics: empirical and theoretical investigations. Biological Journal of the Linnean Society 42, 332.Google Scholar
Hairston, N. G. (1965). On the mathematical analysis of schistosome populations. Bulletin of the World Health Organization 33, 4562.Google ScholarPubMed
Hoepffner, M., Morell, M. & Rossignold, D. (1985). La sécheresse de 1983 en Guadeloupe. Cahiers de l'orstom Ser. Hydrologie 11, 5173.Google Scholar
Imbert-Establet, D. & Combes, C. (1992). Relocation of Schistosoma mansoni in the lungs and resistance to reinfection in Rattus rattus. Parasitology 104, 51–7.CrossRefGoogle ScholarPubMed
Jourdane, J. & Imbert-Establet, D. (1980). Etude expérimentale de la permissivité du rat sauvage (Rattus rattus) de Guadeloupe à l'égard de Schistosoma mansoni. Hypothèse sur le rôle de cet hôte dans la dynamique des foyers naturels. Acta Tropica 37, 4151.Google Scholar
Macdonald, G. (1965). The dynamics of helminth infections with special reference to schistosomes. Transactions of the Royal Society of Tropical Medicine and Hygiene 59, 489506.CrossRefGoogle ScholarPubMed
May, R. M. (1977). Dynamical aspects of host–parasite associations: Crofton's model revisited. Parasitology 75, 259–76.CrossRefGoogle Scholar
Mitchell, G. F., Garcia, E. G., Wood, S. M., Diasanta, R., Almonte, R., Calica, E., Davern, K. M. & Tiu, W. U. (1990). Studies on the sex ratio of worms in schistosome infections. Parasitology 101, 2734.CrossRefGoogle ScholarPubMed
Pointier, J. P. & Théron, A. (1979). La schistosomose intestinale dans les forêts marécageuses à Pterocarpus de Guadeloupe (Antilles Françaises). Annales de Parasitologie 54, 4356.Google Scholar
Price, P. W. (1980). Evolutionary Biology of Parasites. New Jersey: Princeton University Press.Google ScholarPubMed
Rollinson, D., Imbert-Establet, D. & Ross, G. C. (1986). Schistosoma mansoni from naturally infected Rattus rattus in Guadeloupe: identification, prevalence and enzyme polymorphism. Parasitology 93, 3953.CrossRefGoogle ScholarPubMed
Théron, A. (1984). Early and late shedding patterns of Schistosoma mansoni cercariae: ecological significance in transmission to human and murine hosts. Journal of Parasitology 4, 652–5.CrossRefGoogle Scholar
Théron, A., Bremond, P. & Imbert-Establet, D. (1989). Allelic frequency variations at the MDH-1 locus within Schistosoma mansoni strains from Guadeloupe (French West Indies): ecological interpretation. Comparative Biochemistry and Physiology 93, 32–7.Google ScholarPubMed
Théron, A. & Combes, C. (1988). Genetic analysis of cercarial emergence rhythms of Schistosoma mansoni. Behaviour Genetics 2, 201–9.CrossRefGoogle Scholar
Zar, J. H. (1984). Biostatistical Analysis. New Jersey: Prentice Hall International Editions.Google Scholar