Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T20:51:30.165Z Has data issue: false hasContentIssue false

Population heterogeneity among clones of New World Leishmania species

Published online by Cambridge University Press:  06 April 2009

R. S. Pacheco
Affiliation:
Instituto Oswaldo Cruz (FIOCRUZ), Av. Brasil 4365, Manguinhos 21040, Caixa Postal 926, Rio de Janeiro, RJ, Brasil
G. Grimaldi Jr.
Affiliation:
Instituto Oswaldo Cruz (FIOCRUZ), Av. Brasil 4365, Manguinhos 21040, Caixa Postal 926, Rio de Janeiro, RJ, Brasil
H. Momen
Affiliation:
Instituto Oswaldo Cruz (FIOCRUZ), Av. Brasil 4365, Manguinhos 21040, Caixa Postal 926, Rio de Janeiro, RJ, Brasil
C. M. Morel
Affiliation:
Instituto Oswaldo Cruz (FIOCRUZ), Av. Brasil 4365, Manguinhos 21040, Caixa Postal 926, Rio de Janeiro, RJ, Brasil

Summary

Cell cloning techniques and schizodeme analysis were used to detect mixtures of subpopulations in Leishmania parasites, isolated from humans and a reservoir host. Clones were obtained by plating promastigotes, at limited dilution, on solid medium. The resultant colonies were analysed by the restriction profile of kinetoplast DNA minicircles (schizodeme analysis). The efficiency of plating was around 40–60%, and subpopulations of different schizodemes, in stocks of Leishmania isolated from 2 cases of human cutaneous leishmaniasis were detected. The presence of different schizodemes in one isolate from a sylvatic animal suggested the possibility of a mixed natural infection.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Avise, J. C., Lansman, R. A. & Shade, R. O. (1979). The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. I. Population struture and evolution in the genus Peromyscus. Genetics 92, 279–95.CrossRefGoogle Scholar
Bongertz, V. & Dvorak, J. A. (1983). Trypanosoma cruzi: Antigenic analysis of cloned stocks. American Journal of Tropical Medicine and Hygiene 32, 716–22.CrossRefGoogle ScholarPubMed
Brown, W. M., George, M. Jr & Wilson, A. C. (1979). Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences, USA 76, 1967–71.CrossRefGoogle ScholarPubMed
Deane, M. P., Souza, M. A., Pereira, N. M., Gonçalves, A. M., Momen, H. & Morel, C. M. (1984). Trypanosoma cruzi: Inoculation schedules and re-isolation methods select individual strains from doubly infected mice as demonstrated by schizodeme analysis. Journal of Protozoology 31, 276–80.CrossRefGoogle Scholar
Engel, J. C., Dvorak, J. A., Segura, E. L. & Crane, M. J. (1982). Trypanosoma cruzi: Biological characterization of 19 clones derived from two chronic chagasic patients. Journal of Protozoology 29, 555–60.CrossRefGoogle Scholar
Goldberg, S. S. & Silva Pereira, A. A. (1983). Enzyme variation among clones of Trypanosoma cruzi. Journal of Parasitology 69, 91–6.CrossRefGoogle ScholarPubMed
Gonçalves, A. M., Chiari, E., Deane, M. P., Carneiro, M., Romanha, A. J. & Morel, C. M. (1984 a). Schizodeme characterization of natural and artificial populations of Trypanosoma cruzi as a tool in the study of Chagas disease. In Application of Biochemical and Molecular Biology Techniques to Problems of Parasite and Vector Identification (ed. Newton, B. A.), pp. 253275. Proceedings of an International Symposium, 1982. UNDP/ World Bank/WHO Special Programme for Research and Training in Tropical Diseases. Geneva, Switzerland.Google Scholar
Gonçalves, A. M., Nehme, N. S. & Morel, C. M. (1984 b). Trypanosomatids characterization by schizodeme analysis. In Gene and Antigens of Parasites — A Laboratory Manual 2nd Edn (ed. Morel, C. M.), pp. 95109. UNDP/ World Bank/WHO Special Programme for Research and Training in Tropical Disease. FINEP, CNPq and FIOCRUZ.Google Scholar
Grimaldi, G. Jr., Davis, J. R. & McMahon-Pratt, D. (1987). Identification and distribution of New World Leishmania species characterized by serodeme analysis using monoclonal antibodies. American Journal of Tropical Medicine and Hygiene 36, 270–87.CrossRefGoogle ScholarPubMed
Handman, E., Hocking, R. E., Mitchell, G. F. & Spithill, T. W. (1983). Isolation and characterization of infective and non-infective clones of Leishmania tropica. Molecular and Biochemical Parasitology 7, 111–26.CrossRefGoogle ScholarPubMed
Jaffe, C. L., Grimaldi, G. Jr. & McMahon-Pratt, D. (1984). Cultivation and cloning of Leishmania. In Gene and Antigens of Parasites — A Laboratory Manual, 2nd Edn. (ed. Morel, C. M.), pp. 4791. UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Disease, FINEP, CNPq and FIOCRUZ.Google Scholar
Keppel, A. D. & Janovy, J. Jr. (1980). Morphology of Leishmania donovani colonies grown on blood agar plates. Journal of Parasitology 66, 349–51.CrossRefGoogle ScholarPubMed
Morel, C. M., Chiari, E., Plessmann Camargo, E., Mattei, D. M., Romanha, A. J. & Simpson, L. (1980). Strains and clones of Trypanosoma cruzi can be characterized by patterns of restriction endonuclease products of kinetoplast DNA minicircles. Proceedings of the National Academy of Sciences, USA 7, 6810–14.CrossRefGoogle Scholar
Pacheco, R. S., Lopes, U. G., Morel, C. M., Grimaldi, G. Jr. & Momen, H. (1986). Schizodeme analysis of Leishmania isolates and comparison with some phenotypic techniques. In Leishmania. Taxonomie et Phylogenèse. Applications Eco-Epidemiologiques, (ed. Rioux, J. A.), pp. 5795. Colloque International CNRS/INSERM, 1984. IMEEE, Montpellier.Google Scholar
Pacheco, R. S., Grimaldi, G. Jr. & Morel, C. M. (1987). Inhibition of growth of Leishmania mexicana mexicana by Leishmania mexicana amazonensis during in vitro co-cultivation. Memorias do Instituto Oswaldo Cruz, Rio de Janeiro 82, 537–42.CrossRefGoogle ScholarPubMed
Safjanova, V. M., Alekseev, A. N. & Stetzenko, M. M. (1980). Serological study of Leishmania Clones from experimentally and naturally infected sandflies. Parazitologiya 14, 229–36. (In Russian.)Google Scholar
Shurkhal, A. V., Kellina, O. I., Passova, O. M., Strelkova, M. V. & Rakitskaya, T. K. (1986). Preliminary results of comparative studies on biochemical gene markers in Leishmania at species, strain and clone levels. In Leishmania. Taxonomie et Phylogenèse. Applications Eco-Epidemiologiques, (ed. Rioux, J. A.), pp. 91104. Colloque International CNRS/INSERM, 1984. IMEEE, Montpellier.Google Scholar
Spithill, T. W. & Grumont, R. J. (1984). Identification of species, strains and clones of Leishmania by characterization of kinetoplast DNA minicircles. Molecular and Biochemical Parasitology 12, 217–36.CrossRefGoogle ScholarPubMed
Tanuri, A., Andrade, P. P. & Almeida, D. F. (1981). A simple highly efficient plating method for trypanosomatids. Journal of Protozoology 28, 360–2.CrossRefGoogle Scholar
Yoshida, E. L. A., Silva, R. L., Cortez, L. Jr. & Correa, F. M. A. (1979). Encontro de espécie do Gênero Leishmania em Didelphis marsupialis aurita no Estado de São Paulo, Brasil. Revista do Instituto de Medicina Tropical de São Paulo 21, 110–13.Google Scholar
Yoshida, E. L. A., Correa, F. M. A., Pacheco, R. S., Momen, H. & Grimaldi, G. Jr. (1985). Leishmania mexicana in Didelphis marsupialis aurita in São Paulo State, Brazil. Revista do Instituto de Medicina Tropical de São Paulo 27, 172.CrossRefGoogle ScholarPubMed