Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T16:40:18.837Z Has data issue: false hasContentIssue false

Probing Trypanosoma cruzi biology with DNA microarrays

Published online by Cambridge University Press:  12 May 2005

B. A. BURLEIGH
Affiliation:
Department of Immunology and Infectious Diseases, Harvard School of Public Health, 665 Huntingzon Ave, Boston, MA 02115, USA

Abstract

The application of genome-scale approaches to study Trypanosoma cruzi–host interactions at different stages of the infective process is becoming possible with sequencing and assembly of the T. cruzi genome nearing completion and sequence information available for both human and mouse genomes. Investigators have recently begun to exploit DNA microarray technology to analyze host transcriptional responses to T. cruzi infection and dissect developmental processes in the complex T. cruzi life-cycle. Collectively, information generated from these and future studies will provide valuable insights into the molecular requirements for establishment of T. cruzi infection in the host and highlight the molecular events coinciding with disease progression. While the field is in its infancy, the availability of genomic information and increased accessibility to relatively high-throughput technologies represents a significant advancement toward identification of novel drug targets and vaccine candidates for the treatment and prevention of Chagas' disease.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ANDREWS, N. W. ( 1994). From lysosomes into the cytosol: the intracellular pathway of Trypanosoma cruzi. Brazilian Journal of Medicine and Biological Research 27, 471475.Google Scholar
AOKI, M. P., GUINAZU, N., PELLEGRINI, A., GOTOH, T., MASIH, D. T. & GEA, S. ( 2004). Cruzipain, a Major Trypanosoma cruzi Antigen, Promotes Arginase-2 Expression and Survival of Neonatal Mouse Cardiomyocytes. American Journal of Physiology. Cell Physiology 286, C206C212.CrossRefGoogle Scholar
AVILA, A. R., DALLAGIOVANNA, B., YAMADA-OGATTA, S. F., MONTEIRO-GOES, V., FRAGOSO, S. P., KRIEGER, M. A. & GOLDENBERG, S. ( 2003). Stage-specific gene expression during Trypanosoma cruzi metacyclogenesis. Genetics and Molecular Research 2, 159168.Google Scholar
AVILA, A. R., YAMADA-OGATTA, S. F., DA SILVA MONTEIRO, V., KRIEGER, M. A., NAKAMURA, C. V., DE SOUZA, W. & GOLDENBERG, S. ( 2001). Cloning and characterization of the metacyclogenin gene, which is specifically expressed during Trypanosoma cruzi metacyclogenesis. Molecular and Biochemical Parasitology 117, 169177.CrossRefGoogle Scholar
BALL, C. A., SHERLOCK, G., PARKINSON, H., ROCCA-SERA, P., BROOKSBANK, C., CAUSTON, H. C., CAVALIERI, D., GAASTERLAND, T., HINGAMP, P., HOLSTEGE, F., RINGWALD, M., SPELLMAN, P., STOECKERT, C. J. Jr., STEWART, J. E., TAYLOR, R., BRAZMA, A. & QUACKENBUSH, J. ( 2002). Standards for microarray data. Science 298, 539.CrossRefGoogle Scholar
BASOMBRIO, M. A., SEGURA, M. A., GOMEZ, L. & PADILLA, M. ( 2000). Studies on the virulence and attenuation of Trypanosoma cruzi using immunodeficient animals. Memórias do Instituto Oswaldo Cruz 95, 175178.CrossRefGoogle Scholar
BEVERLEY, S. M. ( 2003). Protozomics: trypanosomatid parasite genetics comes of age. Nature Reviews. Genetics 4, 1119.CrossRefGoogle Scholar
BIRON, C. A., NGUYEN, K. B., PIEN, G. C., COUSENS, L. P. & SALAZAR-MATHER, T. P. ( 1999). Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annual Review of Immunology 17, 189220.CrossRefGoogle Scholar
BLADER, I. J., MANGER, I. D. & BOOTHROYD, J. C. ( 2001). Microarray analysis reveals previously unknown changes in Toxoplasma gondii-infected human cells. Journal of Biological Chemistry 276, 2422324231.CrossRefGoogle Scholar
BLOM, I. E., GOLDSCHMEDING, R. & LEASK, A. ( 2002). Gene regulation of connective tissue growth factor: new targets for antifibrotic therapy? Matrix Biology 21, 473482.Google Scholar
BOOTHROYD, J. C., BLADER, I., CLEARY, M. & SINGH, U. ( 2003). DNA microarrays in parasitology: strengths and limitations. Trends in Parasitology 19, 470476.CrossRefGoogle Scholar
BRAZMA, A. ( 2001). On the importance of standardisation in life sciences. Bioinformatics 17, 113114.CrossRefGoogle Scholar
BRAZMA, A., HINGAMP, P., QUACKENBUSH, J., SHERLOCK, G., SPELLMAN, P., STOECKERT, C., AACH, J., ANSORGE, W., BALL, C. A., CAUSTON, H. C., GAASTERLAND, T., GLENISSON, P., HOLSTEGE, F. C., KIM, I. F., MARKOWITZ, V., MATESE, J. C., PARKINSON, H., ROBINSON, A., SARKANS, U., SCHULZE-KREMER, S., STEWART, J., TAYLOR, R., VILO, J. & VINGRON, M. ( 2001). Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nature Genetics 29, 365371.CrossRefGoogle Scholar
BURLEIGH, B. A., CALER, E. V., WEBSTER, P. & ANDREWS, N. W. ( 1997). A cytosolic serine endopeptidase from Trypanosoma cruzi is required for the generation of Ca2+ signaling in mammalian cells. Journal of Cell Biology 136, 609620.CrossRefGoogle Scholar
BURLEIGH, B. A. & WOOLSEY, A. M. ( 2002). Cell signalling and Trypanosoma cruzi invasion. Cellular Microbiology 4, 701711.CrossRefGoogle Scholar
CHAMOND, N., GREGOIRE, C., COATNOAN, N., ROUGEOT, C., FREITAS-JUNIOR, L. H., DA SILVEIRA, J. F., DEGRAVE, W. M. & MINOPRIO, P. ( 2003). Biochemical characterization of proline racemases from the human protozoan parasite Trypanosoma cruzi and definition of putative protein signatures. Journal of Biological Chemistry 278, 1548415494.CrossRefGoogle Scholar
CHARRON, A. J. & SIBLEY, L. D. ( 2002). Host cells: mobilizable lipid resources for the intracellular parasite Toxoplasma gondii. Journal of Cell Science 115, 30493059.Google Scholar
CHUENKOVA, M. V., FURNARI, F. B., CAVENEE, W. K. & PEREIRA, M. A. ( 2001). Trypanosoma cruzi trans-sialidase: a potent and specific survival factor for human Schwann cells by means of phosphatidylinositol 3-kinase/Akt signaling. Proceedings of the National Academy of Sciences, USA 98, 99369941.CrossRefGoogle Scholar
COPPENS, I., SINAI, A. P. & JOINER, K. A. ( 2000). Toxoplasma gondii exploits host low-density lipoprotein receptor-mediated endocytosis for cholesterol acquisition. Journal of Cell Biology 149, 167180.CrossRefGoogle Scholar
CRANE, M. S. & DVORAK, J. A. ( 1979). Trypanosoma cruzi: interaction with vertebrate cells. DNA synthesis and growth of intracellular amastigotes and their relationship to host cell DNA synthesis and growth. Journal of Protozoology 26, 599604.Google Scholar
DAVIES, M. J., ROSS, A. M. & GUTTERIDGE, W. E. ( 1983). The enzymes of purine salvage in Trypanosoma cruzi, Trypanosoma brucei and Leishmania mexicana. Parasitology 87, 211217.CrossRefGoogle Scholar
DE AVALOS, S. V., BLADER, I. J., FISHER, M., BOOTHROYD, J. C. & BURLEIGH, B. A. ( 2002). Immediate/early response to Trypanosoma cruzi infection involves minimal modulation of host cell transcription. Journal of Biological Chemistry 277, 639644.CrossRefGoogle Scholar
DIAS, J. C., SILVEIRA, A. C. & SCHOFIELD, C. J. ( 2002). The impact of Chagas disease control in Latin America: a review. Memórias do Instituto Oswaldo Cruz 97, 603612.CrossRefGoogle Scholar
DUNCAN, M. R., FRAZIER, K. S., ABRAMSON, S., WILLIAMS, S., KLAPPER, H., HUANG, X. & GROTENDORST, G. R. ( 1999). Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis: down-regulation by cAMP. Faseb Journal 13, 17741786.CrossRefGoogle Scholar
DUTHIE, M. S., WLEKLINSKI-LEE, M., SMITH, S., NAKAYAMA, T., TANIGUCHI, M. & KAHN, S. J. ( 2002). During Trypanosoma cruzi infection CD1d-restricted NK T cells limit parasitemia and augment the antibody response to a glycophosphoinositol-modified surface protein. Infection and Immunity 70, 3648.CrossRefGoogle Scholar
ENGEL, J. C., TORRES, C., HSIEH, I., DOYLE, P. S., McKERROW, J. H. & GARCIA, C. T. ( 2000). Upregulation of the secretory pathway in cysteine protease inhibitor-resistant Trypanosoma cruzi. Journal of Cell Science 113, 13451354.Google Scholar
FERREIRA, L. R., ABRANTES, E. F., RODRIGUES, C. V., CAETANO, B., CERQUEIRA, G. C., SALIM, A. C., REIS, L. F. & GAZZINELLI, R. T. ( 2002). Identification and characterization of a novel mouse gene encoding a Ras-associated guanine nucleotide exchange factor: expression in macrophages and myocarditis elicited by Trypanosoma cruzi parasites. Journal of Leukocyte Biology 72, 12151227.Google Scholar
FINLAY, B. B. & FALKOW, S. ( 1997). Common themes in microbial pathogenicity revisited. Microbiology and Molecular Biology Reviews 61, 136169.Google Scholar
FRAGOSO, S. P., MATTEI, D., HINES, J. C., RAY, D. & GOLDENBERG, S. ( 1998). Expression and cellular localization of Trypanosoma cruzi type II DNA topoisomerase. Molecular and Biochemical Parasitology 94, 197204.CrossRefGoogle Scholar
FRAGOSO, S. P., PLAZANET-MENUT, C., CARREIRA, M. A., MOTTA, M. C., DALLAGIOVANA, B., KRIEGER, M. A. & GOLDENBERG, S. ( 2003). Cloning and characterization of a gene encoding a putative protein associated with U3 small nucleolar ribonucleoprotein in Trypanosoma cruzi. Molecular and Biochemical Parasitology 126, 113117.CrossRefGoogle Scholar
FREVERT, U., SCHENKMAN, S. & NUSSENZWEIG, V. ( 1992). Stage-specific expression and intracellular shedding of the cell surface trans-sialidase of Trypanosoma cruzi. Infection and Immunity 60, 23492360.Google Scholar
GARG, N., POPOV, V. L. & PAPACONSTANTINOU, J. ( 2003). Profiling gene transcription reveals a deficiency of mitochondrial oxidative phosphorylation in Trypanosoma cruzi-infected murine hearts: implications in chagasic myocarditis development. Biochimica et Biophysica Acta 1638, 106120.CrossRefGoogle Scholar
GONCALVES, M. F., UMEZAWA, E. S., KATZIN, A. M., DE SOUZA, W., ALVES, M. J., ZINGALES, B. & COLLI, W. ( 1991). Trypanosoma cruzi: shedding of surface antigens as membrane vesicles. Experimental Parasitology 72, 4353.CrossRefGoogle Scholar
GRELLIER, P., VENDEVILLE, S., JOYEAU, R., BASTOS, I. M., DROBECQ, H., FRAPPIER, F., TEIXEIRA, A. R., SCHREVEL, J., DAVIOUD-CHARVET, E., SERGHERAERT, C. & SANTANA, J. M. ( 2001). Trypanosoma cruzi prolyl oligopeptidase Tc80 is involved in nonphagocytic mammalian cell invasion by trypomastigotes. Journal of Biological Chemistry 276, 4707847086.CrossRefGoogle Scholar
GROTENDORST, G. R. ( 1997). Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Reviews 8, 171179.CrossRefGoogle Scholar
HEUSSLER, V. T., KUENZI, P. & ROTTENBERG, S. ( 2001). Inhibition of apoptosis by intracellular protozoan parasites. International Journal for Parasitology 31, 11661176.CrossRefGoogle Scholar
IGARASHI, A., NASHIRO, K., KIKUCHI, K., SATO, S., IHN, H., FUJIMOTO, M., GROTENDORST, G. R. & TAKEHARA, K. ( 1996). Connective tissue growth factor gene expression in tissue sections from localized scleroderma, keloid, and other fibrotic skin disorders. Journal of Investigative Dermatology 106, 729733.CrossRefGoogle Scholar
KESPER, N. Jr., DE ALMEIDA, K. A., STOLF, A. M. & UMEZAWA, E. S. ( 2000). Immunoblot analysis of trypomastigote excreted-secreted antigens as a tool for the characterization of Trypanosoma cruzi strains and isolates. Journal of Parasitology 86, 862867.Google Scholar
LIMA, E. C., GARCIA, I., VICENTELLI, M. H., VASSALLI, P. & MINOPRIO, P. ( 1997). Evidence for a protective role of tumor necrosis factor in the acute phase of Trypanosoma cruzi infection in mice. Infection and Immunity 65, 457465.Google Scholar
MAGDESIAN, M. H., GIORDANO, R., ULRICH, H., JULIANO, M. A., JULIANO, L., SCHUMACHER, R. I., COLLI, W. & ALVES, M. J. ( 2001). Infection by Trypanosoma cruzi. Identification of a parasite ligand and its host cell receptor. Journal of Biological Chemistry 276, 1938219389.Google Scholar
MATSUI, H., SUZUKI, K., HASUMI, M., KOIKE, H., OKUGI, H., NAKAZATO, H. & YAMANAKA, H. ( 2003). Gene expression profiles of human BPH (II): Optimization of laser-capture microdissection and utilization of cDNA microarray. Anticancer Research 23, 195200.Google Scholar
MICHAILOWSKY, V., SILVA, N. M., ROCHA, C. D., VIEIRA, L. Q., LANNES-VIEIRA, J. & GAZZINELLI, R. T. ( 2001). Pivotal role of interleukin-12 and interferon-gamma axis in controlling tissue parasitism and inflammation in the heart and central nervous system during Trypanosoma cruzi infection. American Journal of Pathology 159, 17231733.CrossRefGoogle Scholar
MINNING, T. A., BUA, J., GARCIA, G. A., McGRAW, R. A. & TARLETON, R. L. ( 2003). Microarray profiling of gene expression during trypomastigote to amastigote transition in Trypanosoma cruzi. Molecular and Biochemical Parasitology 131, 5564.CrossRefGoogle Scholar
MUKHERJEE, S., BELBIN, T. J., SPRAY, D. C., IACOBAS, D. A., WEISS, L. M., KITSIS, R. N., WITTNER, M., JELICKS, L. A., SCHERER, P. E., DING, A. & TANOWITZ, H. B. ( 2003). Microarray analysis of changes in gene expression in a murine model of chronic chagasic cardiomyopathy. Parasitology Research 91, 187196.CrossRefGoogle Scholar
NAU, G. J., RICHMOND, J. F., SCHLESINGER, A., JENNINGS, E. G., LANDER, E. S. & YOUNG, R. A. ( 2002). Human macrophage activation programs induced by bacterial pathogens. Proceedings of the National Academy of Sciences, USA 99, 15031508.CrossRefGoogle Scholar
NGUYEN, V. T. & BENVENISTE, E. N. ( 2000). Involvement of STAT-1 and its family members in interferon-gamma induction of CD40 transcription in microglia/macrophages. Journal of Biological Chemistry 275, 2367423684.CrossRefGoogle Scholar
NOZAKI, T., ENGEL, J. C. & DVORAK, J. A. ( 1996). Cellular and molecular biological analyses of nifurtimox resistance in Trypanosoma cruzi. American Journal of Tropical Medicine and Hygiene 55, 111117.CrossRefGoogle Scholar
OHYAMA, H., ZHANG, X., KOHNO, Y., ALEVIZOS, I., POSNER, M., WONG, D. T. & TODD, R. ( 2000). Laser capture microdissection-generated target sample for high-density oligonucleotide array hybridization. Biotechniques 29, 530536.Google Scholar
SANTOS, M. A., GARG, N. & TARLETON, R. L. ( 1997). The identification and molecular characterization of Trypanosoma cruzi amastigote surface protein-1, a member of the trans-sialidase gene super-family. Molecular and Biochemical Parasitology 86, 111.Google Scholar
SCHARFSTEIN, J., SCHMITZ, V., MORANDI, V., CAPELLA, M. M., LIMA, A. P., MORROT, A., JULIANO, L. & MULLER-ESTERL, W. ( 2000). Host cell invasion by Trypanosoma cruzi is potentiated by activation of bradykinin B(2) receptors. Journal of Experimental Medicine 192, 12891300.CrossRefGoogle Scholar
SIMMS, R. W. & KORN, J. H. ( 2002). Cytokine directed therapy in scleroderma: rationale, current status, and the future. Current Opinion in Rheumatology 14, 717722.CrossRefGoogle Scholar
TARDIEUX, I., WEBSTER, P., RAVESLOOT, J., BORON, W., LUNN, J. A., HEUSER, J. E. & ANDREWS, N. W. ( 1992). Lysosome recruitment and fusion are early events required for trypanosome invasion of mammalian cells. Cell 71, 11171130.CrossRefGoogle Scholar
TARLETON, R. L., GRUSBY, M. J., POSTAN, M. & GLIMCHER, L. H. ( 1996). Trypanosoma cruzi infection in MHC-deficient mice: further evidence for the role of both class I- and class II-restricted T cells in immune resistance and disease. International Immunology 8, 1322.CrossRefGoogle Scholar
URBINA, J. A. & DOCAMPO, R. ( 2003). Specific chemotherapy of Chagas disease: controversies and advances. Trends in Parasitology 19, 495501.CrossRefGoogle Scholar
VIKSTROM, K. L., BOHLMEYER, T., FACTOR, S. M. & LEINWAND, L. A. ( 1998). Hypertrophy, pathology, and molecular markers of cardiac pathogenesis. Circulation Research 82, 773778.CrossRefGoogle Scholar
WESTON, D., PATEL, B. & VAN VOORHIS, W. C. ( 1999). Virulence in Trypanosoma cruzi infection correlates with the expression of a distinct family of sialidase superfamily genes. Molecular and Biochemical Parasitology 98, 105116.CrossRefGoogle Scholar
WOOLSEY, A. M., SUNWOO, L., PETERSEN, C. A., BRACHMANN, S. M., CANTLEY, L. C. & BURLEIGH, B. A. ( 2003). Novel PI 3-kinase-dependent mechanisms of trypanosome invasion and vacuole maturation. Journal of Cell Science 116, 36113622.CrossRefGoogle Scholar
YOSHIDA, N., FAVORETO, S. Jr., FERREIRA, A. T. & MANQUE, P. M. ( 2000). Signal transduction induced in Trypanosoma cruzi metacyclic trypomastigotes during the invasion of mammalian cells. Brazilian Journal of Medicine and Biological Research 33, 269278.CrossRefGoogle Scholar