Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T11:10:14.366Z Has data issue: false hasContentIssue false

Responses of the entomopathogenic nematode, Steinernema riobrave to its insect hosts, Galleria mellonella and Tenebrio molitor

Published online by Cambridge University Press:  04 January 2007

J. M. CHRISTEN
Affiliation:
Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
J. F. CAMPBELL*
Affiliation:
USDA-ARS, Grain Marketing and Production Research Center, 1515 College Ave., Manhattan, KS 66502, USA
E. E. LEWIS
Affiliation:
Department of Entomology, University of California-Davis, Davis CA 95616, USA
D. I. SHAPIRO-ILAN
Affiliation:
USDA-ARS, Southeastern Fruit and Nut Research Unit, 21 Dunbar Road, Byron, GA 31008, USA
S. B. RAMASWAMY
Affiliation:
Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
*
*Corresponding author: Grain Marketing and Production Research Center, 1515 College Avenue, Manhattan, KS 66502, USA. Tel: +785 776 2717. Fax: +785 537 5584. E-mail: james.campbell@gmprc.ksu.edu

Summary

Potential hosts for infective juveniles of entomopathogenic nematodes can vary considerably in quality based on the characteristics of the host species/stage, physiological status (e.g. stress, feeding on toxins), and infection status (heterospecific or conspecific infection). In this study, we investigated responses of the entomopathogenic nematode Steinernema riobrave to hosts (Galleria mellonella or Tenebrio molitor) that were previously parasitized with conspecifics or injected with the nematode-symbiotic bacterium, Xenorhabdus sp., to determine if there is a preference for previously parasitized/injected hosts and when this preference might occur. In no-choice bioassays, the number of juveniles infecting both host species decreased with increasing time post-infection. However, infective juveniles continued to infect previously parasitized hosts up to 72 h. Significant preference was exhibited by S. riobrave for 24 h post-infection G. mellonella larvae over uninfected, and by 24 h post-injection G. mellonella larvae over 48 h post-injection larvae. No significant preference was exhibited by S. riobrave for T. molitor hosts previously parasitized with conspecifics or those injected with bacteria in any treatment combination. Such preference for, or continued infection of parasitized insects, has the potential to impact nematode efficacy.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265267.Google Scholar
Adams, B. J. and Nguyen, K. B. (2002). Taxonomy and systematics. In Entomopathogenic Nematology (ed. Gaugler, R.), pp. 133. CAB International Publishing, New York.Google Scholar
Akhurst, R. J. (1980). Morphological and functional dimorphism in Xenorhabdus spp. bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. Journal of General Microbiology 121, 303309.Google Scholar
Akhurst, R. J. (1982 a). A Xenorhabdus sp. (Eubacteriales: Enterobacteriaceae) symbiotically associated with Steinernema kraussei (Nematoda: Steinernematidae). Revue de Nématologie 5, 277280.Google Scholar
Akhurst, R. J. (1982 b). Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. Journal of General Microbiology 128, 30613065.Google Scholar
Akhurst, R. J. (1983). Taxonomic study of Xenorhabdus, a genus of bacteria symbiotically associated with insect pathogenic nematodes. International Journal of Systematic Bacteriology 33, 3845.Google Scholar
Akhurst, R. J. and Boemare, N. E. (1990). Biology and taxonomy of Xenorhabdus. In Entomopathogenic Nematodes in Biological Control (ed. Gaugler, R. and Kaya, H. K.), pp. 7590. CRC Press, Boca Raton, FL, USA.Google Scholar
Akhurst, R. J. and Dunphy, G. B. (1993). Tripartite interactions between symbiotically associated entomopathogenic bacteria, nematodes, and their insect hosts. In Parasitoids and Pathogens of Insects, vol. 2: Pathogens (ed. Beckage, N. E., Thompson, S. N. and Federic, B. A.), pp. 123. Academic Press, San Diego.Google Scholar
Anderson, R. M. and Michel, J. F. (1977). Density-dependent survival in populations of Ostertagia osteriagi. International Journal for Parasitology 7, 321329.Google Scholar
Benson, J. F. (1973). Intraspecific competition in the population dynamics of Bracon hebetor Say (Hymenoptera: Braconidae). Journal of Animal Ecology 42, 105124.CrossRefGoogle Scholar
Boff, M. I. C., Wiegers, G. L., Gerritsen, L. J. M. and Smits, P. H. (2000). Development of the entomopathogenic nematode Heterorhabditis megidis strain NLH-E 87.3 in Galleria mellonella. Nematology 2, 303308.CrossRefGoogle Scholar
Bohan, D. A. and Hominick, W. M. (1996). Investigations on the presence of an infectious proportion amongst populations of Steinernema feltiae (Site 76 strain) infective stages. Parasitology 112, 113118.CrossRefGoogle Scholar
Bohan, D. A. and Hominick, W. M. (1997 a). Long term dynamics of infectiousness within the infective stage pool of the entomopathogenic nematodes Steinernema feltiae (Site 76 strain) Filipjev. Parasitology 114, 301308.Google Scholar
Bohan, D. A. and Hominick, W. M. (1997 b). Sex and the dynamics of infection in the entomopathogenic nematode Steinernema feltiae. Journal of Helminthology 71, 197201.CrossRefGoogle Scholar
Byers, J. A. and Poinar, G. O. Jr. (1982). Location of insect hosts by the nematode, Neoaplectana carpocapsae, in response to temperature. Behavior 79, 110.CrossRefGoogle Scholar
Campbell, J. F., Koppenhöfer, A. M., Kaya, H. K. and Chinnasri, B. (1999). Are there temporarily non-infectious dauer stages in entomopathogenic nematode populations: a test of the phased infectivity hypothesis. Parasitology 118, 499508.Google Scholar
Campbell, J. F. and Lewis, E. E. (2002). Entomopathogenic nematode host-search strategies. In The Behavioural Ecology of Parasites (ed. Lewis, E. E., Campbell, J. F. and Sukhdeo, M. V. K.), pp. 1338. CAB International, New York.CrossRefGoogle Scholar
Chappell, L. H. and Pike, A. W. (1976). Loss of Hymenolepis diminuta from the rat. International Journal for Parasitology 6, 333339.CrossRefGoogle ScholarPubMed
Choo, H. Y., Kaya, H. K., Burlando, T. M. and Gaugler, R. (1989). Entomopathogenic nematodes host-finding ability in the presence of plant roots. Environmental Entomology 18, 11361140.Google Scholar
Combes, C., Bartoli, P. and Théron, A. (2002). Trematode transmission strategies. In The Behavioural Ecology of Parasites (ed. Lewis, E. E., Campbell, J. F. and Sukhdeo, M. V. K.), pp. 112. CAB International, New York.Google Scholar
Doutt, R. L. (1964). Biological characteristics of entomophagous adults. In Biological Control of Insect Pests and Weeds (ed. DeBach, P.), pp. 145167. Reinhold, New York.Google Scholar
Epsky, N. D. and Capinera, J. L. (1993). Quantification of invasion of two strains of Steinernema carpocapsae (Weiser) into three lepidopteran larvae. Journal of Nematology 25, 173180.Google Scholar
Fan, X. and Hominick, W. M. (1991). Effects of low storage temperature on survival and infectivity of two Steinernema species (Nematoda: Steinernematidae). Revue de Nématologie 14, 407412.Google Scholar
Forst, S. and Nealson, K. (1996). Molecular biology of the symbiotic-pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiological Reviews 60, 2143.Google Scholar
Gaugler, R., LeBeck, L., Nakagaki, B. and Boush, G. M. (1980). Orientation of the entomogenous nematode Neoaplectana carpocapsae to carbon dioxide. Environmental Entomology 9, 649652.Google Scholar
Glazer, I. (1997). Effects of infected insects on secondary invasion of steinernematid entomopathogenic nematodes. Parasitology 114, 597604.Google ScholarPubMed
Godfray, H. C. J. (1994). Parasitoids: Behavioral and Evolutionary Ecology. Princeton University Press, Princeton, NJ, USA.Google Scholar
Grewal, P. S., Lewis, E. E. and Gaugler, R. (1997). Response of infective stage parasites (Nematoda: Steinernematidae) to volatile cues from infected hosts. Journal of Chemical Ecology 23, 503515.CrossRefGoogle Scholar
Grewal, P. S., Selvan, S., Lewis, E. E. and Gaugler, R. (1993). Male insect-parasitic nematodes: a colonizing sex. Experientia 49, 605608.Google Scholar
Griffin, C. T. (1996). Effects of prior storage conditions on the infectivity of Heterorhabditis sp. (Nematoda: Heterorhabditidae). Fundamental and Applied Nematology 19, 95102.Google Scholar
Hasselberg, C. A. and Andreaseen, J. (1975). Some influences of population density on Hymenolepis diminuta in rats. Parasitology 71, 517523.CrossRefGoogle Scholar
Hominick, W. M. and Reid, A. P. (1990). Perspectives on entomopathogenic nematology. In Entomopathogenic Nematodes in Biological Control (ed. Gaugler, R. and Kaya, H. K.), pp. 327345. CRC Press, Boca Raton, FL, USA.Google Scholar
Isaacson, P. J. and Webster, J. M. (2002). Antimicrobial activity of Xenorhabdus sp. RIO (Enterobacteriaceae) symbiont of the entomopathogenic nematode, Steinernema riobrave (Rhabditida: Steinernematidae). Journal of Invertebrate Pathology 79, 146153.CrossRefGoogle ScholarPubMed
Kaya, H. K. (1990). Soil ecology. In Entomopathogenic Nematodes in Biological Control (ed. Gaugler, R. and Kaya, H. K.),pp. 93115. CRC Press, Boca Raton, FL, USA.Google Scholar
Kaya, H. K. and Gaugler, R. (1993). Entomopathogenic nematodes. Annual Review of Entomology 38, 181206.Google Scholar
Kaya, H. K. and Stock, S. P. (1997). Techniques in insect nematology. In Manual of Techniques in Insect Pathology (ed. Lacey, L. A.), pp. 281324. Academic Press, New York.CrossRefGoogle Scholar
Koppenhöfer, A. M. and Kaya, H. K. (1995). Density-dependent effects on Steinernema glaseri (Nematoda: Steinernematidae) within an insect host. Journal of Parasitology 81, 797799.Google Scholar
Kuehl, R. O. (2000). Design of Experiments: Statistical Principles of Research Design and Analysis. Duxbury, New York.Google Scholar
Kunkel, B. A., Shapiro-Ilan, D. I., Campbell, J. F. and Lewis, E. E. (2006). Effect of Steinernema glaseri-infected host exudates on movement of conspecific infective juveniles. Journal of Invertebrate Pathology 93, 4249.Google Scholar
Laing, J. (1937). Host-finding by insect parasites. I. Observations on the finding of hosts by Alysia manducator, Mormoniella vitripennis and Trichogramma evanescens. Journal of Animal Ecology 6, 298317.Google Scholar
Lewis, E. E. and Gaugler, R. (1994). Entomopathogenic nematode (Rhabdita: Steinernematidae) sex ratio relates to foraging strategy. Journal of Invertebrate Pathology 64, 238242.Google Scholar
Lewis, W. J., Vet, L. E. M., Tumlinson, J. H., van Lenternen, J. C. and Papaj, D. R. (1990). Variations in parasitoid foraging behavior: essential element of a sound biological control theory. Environmental Entomology 19, 11831193.CrossRefGoogle Scholar
Moss, G. E. (1971). The nature of the immune response of the mouse to the bile duct cestode Hymenolepis microstoma. Parasitology 62, 285294.CrossRefGoogle Scholar
Pye, A. E. and Burman, M. (1981). Neoaplectana carpocapsae: Nematode accumulations on chemical and bacterial gradients. Experimental Parasitology 15, 1320.CrossRefGoogle Scholar
Ramos-Rodríguez, O., Campbell, J. F., Lewis, E. E., Shapiro-Ilan, D. I. and Ramaswamy, S. B. (2006). Dynamics of carbon dioxide release from insects infected with entomopathogenic nematodes. Journal of Invertebrate Pathology (in the Press).Google Scholar
Ramos-Rodríguez, O., Campbell, J. F., Christen, J. M., Shapiro-Ilan, D. I., Lewis, E. E. and Ramaswamy, S. B. (2007). Attraction behaviour of three entomopathogenic nematode species towards infected and unifected hosts. Parasitology (in the Press).Google Scholar
Rasmann, S., Köllner, T. G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J. and Turlings, T. C. J. (2005). Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature, London 434, 732737.Google Scholar
Renn, N. (1998). Routes of penetration of the entomopathogenic nematode Steinernema feltiae attacking larval and adult houseflies (Musca domestica). Journal of Invertebrate Pathology 72, 281287.Google Scholar
Roberts, L. S. (1961). The influence of population density on patterns and physiology of growth in Hymenolepis diminuta (Cestoda: Cyclophllidea) in the definitive host. Experimental Parasitology 11, 332371.CrossRefGoogle ScholarPubMed
Rotary, N. and Gerling, D. (1973). The influence of some external factors upon the sex ration of Bracon hebetor Say (Hymenoptera: Braconidae). Environmental Entomology 2, 135138.Google Scholar
Ryder, J. J. and Griffin, C. T. (2002). Density dependent fecundity and infective juvenile production in the entomopathogenic nematode, Heterorhabditis megidis. Parasitology 125, 8392.Google Scholar
Salt, G. (1935). Experimental studies in insect parasitism. III. Host selection. Proceedings of the Royal Society of London, B 114, 413435.Google Scholar
SAS Institute (2003). SAS/STAT User's Guide, Version 9.1. SAS Institute Inc., Cary, NC, USA.Google Scholar
Schmidt, J. and All, J. N. (1979). Attraction of Neoaplectana carpocapsae (Nematoda: Steinernematidae) to common excretory products of insects. Environmental Entomology 8, 5561.CrossRefGoogle Scholar
Selvan, S., Campbell, J. F. and Gaugler, R. (1993). Density-dependent effects on entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) within an insect host. Journal of Invertebrate Pathology 62, 278284.Google Scholar
Shapiro, D. I., Lewis, E. E., Paramasivam, S. and McCoy, C. W. (2000). Nitrogen partitioning in Heterorhabditis bacteriophora-infected hosts and the effects of nitrogen on attraction/repulsion. Journal of Invertebrate Pathology 76, 4348.Google Scholar
Shingai, R., Wakabayashi, T., Sakata, K. and Matsuura, T. (2005). Chemotaxis of Caenorhabditis elegans during simultaneous presentation of two water-soluble attractants, L-lysine and chloride ions. Comparative Biochemistry and Physiology, Part A 142, 308317.Google Scholar
Stuart, R. J., Abu Hatab, M. and Gaugler, R. (1998). Sex ratio and the infection process in entomopathogenic nematodes: are males the colonizing sex? Journal of Invertebrate Pathology 72, 288295.Google Scholar
Thomas, G. M. and Poinar, G. O. (1979). Xenorhabdus gen nov., a genus of entomopathogenic, nematophilic bacteria of the family Enterobacteriaceae. International Journal of Systematic Bacteriology 29, 352360.CrossRefGoogle Scholar
Thurston, G. S., Yule, W. N. and Dunphy, G. B. (1994). Explanations for the low susceptibility of Leptinotarsa decemlineata to Steinernema carpocapsae. Biological Control 4, 5358.Google Scholar
Vet, L. E. M., Lewis, W. J., Papaj, D. R. and van Lenternen, J. C. (1990). A variable response model for parasitoid foraging behavior. Journal of Insect Behaviour 3, 471491.Google Scholar
Vinson, S. B. (1981). Habitat location. In Semiochemicals, Their Role in Pest Control (ed. Nordlund, D. A., Jones, R. L. and Lewis, W. J.), pp. 5178. John Wiley, New York.Google Scholar
Zurek, L., Schal, C. and Watson, D. W. (2000). Diversity and contribution of the gastro-intestinal bacterial community to the development of Musca domestica (Diptera: Muscidae) larvae. Journal of Medical Entomology 37, 924928.Google Scholar