Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T15:38:51.308Z Has data issue: false hasContentIssue false

Transformation in vitro of Leishmania mexicana amastigotes to promastigotes: nutritional requirements and the effect of drugs

Published online by Cambridge University Press:  06 April 2009

D. T. Hart
Affiliation:
Department of Zoology, University of Glasgow, Glasgow G12 8QQ
K. Vickerman
Affiliation:
Department of Zoology, University of Glasgow, Glasgow G12 8QQ
G. H. Coombs
Affiliation:
Department of Zoology, University of Glasgow, Glasgow G12 8QQ

Summary

An in vitro system is described in which over 85% of a population of Leishmania mexicana mexicana amastigotes transforms to promastigotes within 48 h. The differentiation process involves 3 morphologically and biochemically distinct intermediates, including a division stage. Cell division is shown to be necessary for complete development to promastigotes. Foetal calf serum (FCS) has been found to be an essential component of the medium for high percentage transformation to be achieved. One of the important components of the FCS has been identified as non-esterified fatty acids, and these support a relatively high percentage of amastigotes through transformation in the absence of FCS, possibly due to their use as energy substrates. Only small numbers of amastigotes transform to promastigotes if glucose or amino acids are the only energy substrates available. Transformation is inhibited by a number of metabolic inhibitors including anti-leishmanial and other anti-protozoal drugs. The stage at which inhibition is apparent varies with the inhibitor. It is suggested that the system described for the transformation in vitro of L. m. mexicana amastigotes to promastigotes may be the best method available at present for studying the metabolism and drug sensitivity of amastigotes free from possible interference by host macrophage components.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bachrach, U., Brem, S., Wertman, S. B., Schnur, L. F. & Greenblatt, C. L. (1979). Leishmania spp; effect of inhibitors on growth and on polyamine and macromolecular synthesis. Experimental Parasitology 48, 464–70.CrossRefGoogle Scholar
Berens, R. L., Brun, R. & Krassner, S. M. (1976). A simple monophasic medium for axenic culture of haemoflagellates. Journal of Parasitology 62, 360–5.CrossRefGoogle Scholar
Berman, J. D. & Wyler, D. J. (1980). An in vitro model for investigation of chemotherapeutic agents in leishmaniasis. Journal of Infectious Diseases 142, 83–6.CrossRefGoogle Scholar
Brun, R., Berens, R. L. & Krassner, S. M. (1976). Inhibition of Leishmania donovani transformation by hamster spleen homogenates and active human lymphocytes. Nature, London 262, 689–91.CrossRefGoogle ScholarPubMed
Brun, R. & Krassner, S. M. (1976). Quantitative ultrastructure investigations of mitochondrial development in Leishmania donovani during transformation. Journal of Protozoology 23, 493–7.CrossRefGoogle ScholarPubMed
Chang, K. P., Steiger, R. F., Dave, C. & Cheng, Y-C. (1978). Effects of methylglyoxal bis (guanylhydrazone) on trypanosomatid flagellates: inhibition of growth and nucleoside incorporation in Trypanosoma brucei. Journal of Protozoology 25, 145–9.CrossRefGoogle ScholarPubMed
Cosgrove, W. B., Skeen, M. J. & Hajduk, S. L. (1979). Effects of hydroxyurea on Crithidia fasciculata. Journal of Protozoology 26, 643–8.Google Scholar
Fukami, M. H. & Williamson, J. R. (1971). On the mechanism of inhibition of fatty acid oxidation by 4-pentenoic acid in rat liver mitochondria. Journal of Biological Chemistry 246, 1206–21.CrossRefGoogle Scholar
Fulton, J. D. & Joyner, L. P. (1949). Studies on protozoa, Part I. The metabolism of Leishman-donovan bodies and flagellates of Leishmania donovani. Transactions of the Royal Society of Tropical Medicine and Hygiene 43, 274–86.CrossRefGoogle Scholar
Hart, D. T. & Coombs, G. H. (1980). Morphological and biochemical studies of the in vitro transformation of Leishmania mexicana mexicana amastigotes to promastigotes. Journal of Protozoology 27, 63 A.Google Scholar
Hart, D. T. & Coombs, G. H. (1981). Effects of carbon dioxide and oxygen upon the in vitro transformation and growth of Leishmania mexicana. Molecular and Biochemical Parasitology (in the Press).CrossRefGoogle ScholarPubMed
Hart, D. T., Vickerman, K. & Coombs, G. H. (1981 a). A quick, simple method for purifying Leishmania amastigotes in large numbers. Parasitology 82, 345–55.Google Scholar
Hart, D. T., Vickerman, K. & Coombs, G. H. (1981 b). Respiration of Leishmania mexicana amastigotes and promastigotes. Molecular and Biochemical Parasitology (in the Press).Google Scholar
Janovy, J. (1967). Respiratory changes accompanying leishmania to leptomonad transformation in Leishmania donovani. Experimental Parasitology 20, 51–5.CrossRefGoogle ScholarPubMed
Konigk, E. (1978). Purine nucleotide metabolism in promastigotes of Leishmania tropica: inhibitory effects of allopurinol and analogs of purine nucleosides. Tropenmedizin und Parasitologie 29, 439–42.Google ScholarPubMed
Krassner, S. M. (1969). Proline metabolism in Leishmania tarentolae. Experimental Parasitology 24, 348&63.CrossRefGoogle ScholarPubMed
Krassner, S. M.Flory, B. (1972). Proline metabolism in Leishmania donovani promastigotes. Journal of Protozoology 19, 682–5.CrossRefGoogle ScholarPubMed
Krassner, S. M., Morrow, C. D. & Flory, B. (1980 a). Inhibition of Leishmania donovani amastigote to promastigote transformation by infected hamster spleen lymphocyte lysates. Journal of Protozoology 27, 8792.CrossRefGoogle ScholarPubMed
Krassner, S. M., Morrow, C. D. & Flory, B. (1980 b). Polyamines in the hemoflagellate, Leishmania donovani: evidence for spermine in the amastigote stage. Comparative Biochemistry and Physiology 66B, 307–11.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193, 265–75.CrossRefGoogle ScholarPubMed
Marr, J. J. & Berens, R. L. (1977). Antileishmanial effect of allopurinol II. Relationship of adenine metabolism in Leishmania species to the action of allopurinol. Journal of Infectious Diseases 136, 724–32.CrossRefGoogle Scholar
Mukkada, A. J., Schaefer, F. W., Simon, M. W. & Neu, C. (1974). Delayed in vitro utilization of glucose by Leishmania tropica promastigotes. Journal of Protozoology 21, 393–7.Google Scholar
Nelson, D. J., Bugge, C. J. L., Elion, G. B., Berens, R. L. & Marr, J. J. (1979). Metabolism of pyrazolo (3,4-d) pyrimidines in Leishmania braziliensis and Leishmania donovani. Journal of Biological Chemistry 254, 3959–64.CrossRefGoogle Scholar
Nelson, D. J., Lafon, S. W., Tuttle, J. V., Miller, W. H., Miller, R. L., Krenitsky, T. A., Elion, G. B., Berens, R. L. & Marr, J. J. (1979). Allopurinol ribonucleoside as an antileishmanial agent. Journal of Biological Chemistry 254, 11544–9.CrossRefGoogle ScholarPubMed
Robinson, J. & Cooper, J. M. (1970). Method of determining oxygen concentration in biological media, suitable for calibration of oxygen electrode. Analytical Biochemistry 33, 390–9.Google Scholar
Rudzinska, M. A., D'Alesandro, P. A. & Trager, W. (1964). The fine structure of leishmania–leptomonad transformation. Journal of Protozoology 11, 166–91.Google Scholar
Sabourault, D., Bauche, F., Guidicelli, Y., Nordmann, J. & Nordmann, R. (1979). Inhibitory effect of 2-mercaptoacetate on fatty acid oxidation in the liver. Federation of European Biochemical Societies Letters 108, 465–8.CrossRefGoogle ScholarPubMed
Simpson, L. (1968). The leishmania–lepotomonad transformation of Leishmania donovani: nutritional requirements, respiration changes and antigenic changes. Journal of Protozoology 15, 201–7.CrossRefGoogle ScholarPubMed
Spector, T., Jones, T. & Elion, G. B. (1979). Specificity of adenylosuccinate synthetase and adenylsuccinate lyase from Leishmania donovani. Selective amination of an antiprotozoal agent. Journal of Biological Chemistry 254, 8422–6.CrossRefGoogle Scholar
Strangways-Dixon, J. B. & Lainson, R. (1966). The epidemiology of dermal leishmaniasis in British Honduras. Part III. The transmission of Leishmania mexicana to man by Phlebotomus pessoanus with observations on the development of the parasite in different species of Phlebotomus. Transactions of the Royal Society for Tropical Medicine and Hygiene 60, 192207.CrossRefGoogle Scholar
Walter, R. D., Buse, E. & Ebert, F. (1978). Effect of cyclic AMP on transformation and proliferation of Leishmania cells. Tropenmedizin und Parasitologie 29, 439–42.Google ScholarPubMed