Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T17:43:30.636Z Has data issue: false hasContentIssue false

The adaptive potential of a survival artist: characterization of the in vitro interactions of Toxoplasma gondii tachyzoites with di-cationic compounds in human fibroblast cell cultures

Published online by Cambridge University Press:  19 October 2011

CHRISTIAN KROPF
Affiliation:
Institute of Parasitology, Vetsuisse Faculty, University of Berne, Switzerland
KARIM DEBACHE
Affiliation:
Institute of Parasitology, Vetsuisse Faculty, University of Berne, Switzerland
CHRISTOPH RAMPA
Affiliation:
Institute of Parasitology, Vetsuisse Faculty, University of Berne, Switzerland
FABIENNE BARNA
Affiliation:
Institute of Parasitology, Vetsuisse Faculty, University of Berne, Switzerland
MICHELLE SCHORER
Affiliation:
Institute of Parasitology, Vetsuisse Faculty, University of Berne, Switzerland
CHAD E. STEPHENS
Affiliation:
Department of Chemistry and Physics, Augusta State University, Augusta, Georgia 30904-2200, USA
MOHAMED A. ISMAIL
Affiliation:
Department of Chemistry, Georgia State University, PO Box 4098, Atlanta Georgia, USA Department of Chemistry, College of Science, King Faisal University, PO Box, Hofuf 31982, Saudi Arabia
DAVID W. BOYKIN
Affiliation:
Department of Chemistry, Georgia State University, PO Box 4098, Atlanta Georgia, USA
ANDREW HEMPHILL*
Affiliation:
Institute of Parasitology, Vetsuisse Faculty, University of Berne, Switzerland
*
*Corresponding author: Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland. Tel: +41 31 631 2384. Fax: +41 31 631 2477. E-mail: andrew.hemphill@vetsuisse.unibe.ch

Summary

The impact of di-cationic pentamidine-analogues against Toxoplama gondii (Rh- and Me49-background) was investigated. The 72 h-growth assays showed that the arylimidamide DB750 inhibited the proliferation of tachyzoites of T. gondii Rh and T. gondii Me49 with an IC50 of 0·11 and 0·13 μm, respectively. Pre-incubation of fibroblast monolayers with 1 μm DB750 for 12 h and subsequent culture in the absence of the drug also resulted in a pronounced inhibiton of parasite proliferation. However, upon 5–6 days of drug exposure, T. gondii tachyzoites adapted to the compound and resumed proliferation up to a concentration of 1·2 μm. Out of a set of 32 di-cationic compounds screened for in vitro activity against T. gondii, the arylimidamide DB745, exhibiting an IC50 of 0·03 μm and favourable selective toxicity was chosen for further studies. DB745 also inhibited the proliferation of DB750-adapted T. gondii (IC50=0·07 μm). In contrast to DB750, DB745 also had a profound negative impact on extracellular non-adapted T. gondii tachyzoites, but not on DB750-adapted T. gondii. Adaptation of T. gondii to DB745 (up to a concentration of 0·46 μm) was much more difficult to achieve and feasible only over a period of 110 days. In cultures infected with DB750-adapted T. gondii seemingly intact parasites could occasionally be detected by TEM. This illustrates the astonishing capacity of T. gondii tachyzoites to adapt to environmental changes, at least under in vitro conditions, and suggests that DB745 could be an interesting drug candidate for further assessments in appropriate in vivo models.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barratt, J. L., Harkness, J., Marriott, D., Ellis, J. T. and Stark, D. (2010). Importance of nonenteric protozoan infections in immunocompromised people. Clinical Microbiology Reviews 23, 795836.CrossRefGoogle ScholarPubMed
Batista, D. G., Batista, M. M., de Oliveira, G. M., do Amaral, P. B., Lannes-Vieira, J., Britto, C. C., Junqueira, A., Lima, M. M., Romanha, A. J., Sales Junior, P. A., Stephens, C. E., Boykin, D. W. and Soeiro, M. N. (2010 a). Arylimidamide DB766, a potential chemotherapeutic candidate for Chagas’ disease treatment. Antimicrobial Agents and Chemotherapy 54, 29402952.CrossRefGoogle ScholarPubMed
Batista, D. G., Pacheco, M. G., Kumar, A., Branowska, D., Ismail, M. A., Hu, L., Boykin, D. W., and Soeiro, M. N. (2010 b). Biological, ultrastructural effect and subcellular localization of aromatic diamidines in Trypanosoma cruzi. Parasitology 137, 251259.CrossRefGoogle ScholarPubMed
Bougdour, A., Braun, L., Cannella, D. and Hakimi, M. A. (2010). Chromatin modifications: implications in the regulation of gene expression in Toxoplasma gondii. Cellular Microbiology 12, 413423.CrossRefGoogle ScholarPubMed
Buckner, F. S. and Navabi, N. (2010). Advances in Chagas disease drug development: 2009–2010. Current Opinion in Infectious Diseases 23, 609616.CrossRefGoogle ScholarPubMed
Carruthers, V. B., and Suzuki, Y. (2007). Effects of Toxoplasma gondii infection on the brain. Schizophreny Bulletin 33, 745751.CrossRefGoogle ScholarPubMed
Cortes, H. C., Muller, N., Boykin, D. W., Stephens, C. E. and Hemphill, A. (2011). In vitro effects of arylimidamides against Besnoitia besnoiti infection in Vero cells. Parasitology 138, 583592.CrossRefGoogle ScholarPubMed
Costa, J. M., Pautas, C., Ernault, P., Foulet, F., Cordonnier, C. and Bretagne, S. (2000). Real-time PCR for diagnosis and follow-up of Toxoplasma reactivation after allogeneic stem cell transplantation using fluorescence resonance energy transfer hybridization probes. Journal of Clinical Microbiology 38, 29292932.CrossRefGoogle ScholarPubMed
Dabritz, H. A. and Conrad, P. A. (2010). Cats and Toxoplasma: implications for public health. Zoonoses and Public Health 57, 3452.CrossRefGoogle ScholarPubMed
Dardé, M. L. (2008). Toxoplasma gondii, “new” genotypes and virulence. Parasite 15, 366–371.CrossRefGoogle ScholarPubMed
Debache, K., Guinaud, C., Kropf, C., Boykin, D., Stephens, C. E. and Hemphill, A. (2011). Experimental treatment of Neospora caninum-infected mice with the arylimidamide DB750 and the thiazolide nitazoxanide. Experimental Parasitology 129, 95100.CrossRefGoogle ScholarPubMed
Dedicoat, M. and Livesley, N. (2006). Management of toxoplasmic encephalitis in HIV-infected adults (with an emphasis on resource-poor settings). Cochrane Database Systemic Reviews 19;3, CD005420.Google Scholar
Dubey, J. P. (2009). History of the discovery of the life cycle of Toxoplasma gondii. International Journal for Parasitology 39, 877882.CrossRefGoogle ScholarPubMed
Dubey, J. P., Schares, G. and Ortega-Mora, L. M. (2007). Epidemiology and control of neosporosis and Neospora caninum. Clinical Microbiology Reviews 20, 323367.CrossRefGoogle ScholarPubMed
Feldman, D. M., Timms, D. and Borgida, D. F. (2010). Toxoplasmosis, parvovirus, and cytomegalovirus in pregnancy. Clinical Laboratory Medicine 30, 709720.CrossRefGoogle ScholarPubMed
Hemphill, A. (1996). Subcellular localization and functional characterization of Nc-p43, a major Neospora caninum tachyzoite surface protein. Infection and Immunity 64, 42794287.CrossRefGoogle ScholarPubMed
Hemphill, A., Gottstein, B. and Kaufmann, H. (1996). Adhesion and invasion of bovine endothelial cells by Neospora caninum. Parasitology 112, 183197.CrossRefGoogle ScholarPubMed
Hemphill, A., Vonlaufen, N., Naguleswaran, A., Keller, N., Riesen, M., Guetg, N., Srinivasan, S. and Alaeddine, F. (2004). Tissue culture and explant approaches to studying and visualizing Neospora caninum and its interactions with the host cell. Microscopy and Microanalysis 10, 602620.CrossRefGoogle ScholarPubMed
Hemphill, A., Vonlaufen, N. and Naguleswaran, A. (2006). Cellular and immunological basis of the host-parasite relationship during infection with Neospora caninum. Parasitology 133, 261278.CrossRefGoogle ScholarPubMed
Henriquez, F. L., Woods, S., Cong, H., McLeod, R. and Roberts, C. W. (2010). Immunogenetics of Toxoplasma gondii informs vaccine design. Trends in Parasitology 26, 550555.CrossRefGoogle ScholarPubMed
Laliberté, J. and Carruthers, V. B. (2008). Host cell manipulation by the human pathogen Toxoplasma gondii. Cellular and Molecular Life Science 65l, 19001915.CrossRefGoogle Scholar
Lanteri, C. A., Stewart, M. L., Brock, J. M., Alibu, V. P., Meshnick, S. R., Tidwell, R. R. and Barrett, M. P. (2006). Roles for the Trypanosoma brucei P2 transporter in DB75 uptake and resistance. Molecular Pharmacology 70, 15851592.CrossRefGoogle ScholarPubMed
Leepin, A., Stüdli, A., Brun, R., Stephens, C. E., Boykin, D. W. and Hemphill, A. (2008). Host cells participate in the in vitro effects of novel diamidine analogues against tachyzoites of the intracellular apicomplexan parasites Neospora caninum and Toxoplasma gondii. Antimicrobial Agents and Chemotherapy 52, 19992008.CrossRefGoogle ScholarPubMed
Lindsay, D. S., Blagburn, B. L., Hall, J. E. and Tidwell, R. R. (1991). Activity of pentamidine and pentamidine analogs against Toxoplasma gondii in cell cultures. Antimicrobial Agents and Chemotherapy 35, 19141916.CrossRefGoogle ScholarPubMed
Matovu, E., Stewart, M. L., Geiser, F., Brun, R., Mäser, P., Wallace, L. J., Burchmore, R. J., Enyaru, J. C., Barrett, M. P., Kaminsky, R., Seebeck, T. and de Koning, H. P. (2003). Mechanisms of arsenical and diamidine uptake and resistance in Trypanosoma brucei. Eukaryotic Cell 2, 10031008.CrossRefGoogle ScholarPubMed
McFadden, D. C., Seeber, F. and Boothroyd, J. C. (1997). Use of Toxoplasma gondii expressing beta-galactosidase for colorimetric assessment of drug activity in vitro. Antimicrobial Agents and Chemotherapy 41, 18491853.CrossRefGoogle ScholarPubMed
Ming, X., Ju, W., Wu, H., Tidwell, R. R., Hall, J. E. and Thakker, D. R. (2009). Transport of dicationic drugs pentamidine and furamidine by human organic cationic transporters. Drug Metabolism and Disposition 37, 424430.CrossRefGoogle Scholar
Montoya, J. G. and Liesenfeld, O. (2004). Toxoplasmosis. Lancet. 363, 19651976.CrossRefGoogle ScholarPubMed
Müller, J., Limban, C., Stadelmann, B., Missir, A. V., Chirita, I. C., Chifiriuc, M. C., Nitulescu, M. G. and Hemphill, A. (2009). Thioureides of 2-(phenoxymethyl)benzoic acid 4-R substituted: a novel class of anti-parasitic compounds. Parasitology International 58. 128135.CrossRefGoogle ScholarPubMed
Naguleswaran, A., Müller, N. and Hemphill, A. (2003). Neospora caninum and Toxoplasma gondii: a novel adhesion/invasion assay reveals distinct differences in tachyzoite-host cell interactions. Experimental Parasitology 104, 149158.CrossRefGoogle ScholarPubMed
Pereira-Chioccola, V. L., Vidal, J. E. and Su, C. (2009). Toxoplasma gondii infection and cerebral toxoplasmosis in HIV-infected patients. Future Microbiology 4, 13631379.CrossRefGoogle ScholarPubMed
Ribera Pascuet, E., López Aldeguer, J., Pérez Elías, M. J. and Podzamczer Palter, D. (1998). Cerebral toxoplasmosis. Enfermeria. Infecciology. Microbiology Clinica 16 Suppl 1, 4551.Google ScholarPubMed
Sauvage, V., Aubert, D., Escotte-Binet, S. and Villena, I. (2009). The role of ATP-binding cassette (ABC) proteins in protozoan parasites. Molecular and Biochemical Parasitology 167, 8194.CrossRefGoogle ScholarPubMed
Scheidegger, A., Vonlaufen, N., Naguleswaran, A., Gianinazzi, C., Müller, N., Leib, S. L. and Hemphill, A. (2005). Differential effects of interferon-gamma and tumor necrosis factor-alpha on Toxoplasma gondii proliferation in organotypic rat brain slice cultures. Journal of Parasitology 91, 307315.CrossRefGoogle ScholarPubMed
Silva, C. F., Batista, M. M., Mota, R. A., de Souza, E. M., Stephens, C. E., Som, P., Boykin, D. W. and Soeiro, M. N. (2007 a). Activity of “reversed” diamidines against Trypanosoma cruziin vitro”. Biochemical Pharmacology 15, 19391946.CrossRefGoogle Scholar
Silva, C. F., Meuser, M. B., De Souza, E. M., Meirelles, M. N., Stephens, C. E., Som, P., Boykin, D. W. and Soeiro, M. N. (2007 b). Cellular effects of reversed amidines on Trypanosoma cruzi. Antimicrobial Agents and Chemotherapy 51, 38033809.CrossRefGoogle ScholarPubMed
Soeiro, M. N., De Souza, E. M., Stephens, C. E. and Boykin, D. W. (2005). Aromatic diamidines as antiparasitic agents. Expert Opinion in Investigational Drugs 14, 957972.CrossRefGoogle ScholarPubMed
Stephens, C. E., Brun, R., Salem, M. N., Werbovetz, K. A., Tanious, F., Wilson, W. D. and Boykin, D. W. (2003). The activity of diguanidino and ‘reversed’ diamidino 2,5-diarylfurans versus Trypanosoma cruzi and Leishmania donovani. Bioorganic Medicinal Chemistry Letters 16, 20652069.CrossRefGoogle Scholar
Tenter, A. M., Heckeroth, A. R. and Weiss, L. M. (2000). Toxoplasma gondii: from animals to humans. International Journal for Parasitology 30, 12171258.CrossRefGoogle ScholarPubMed
Wang, M. Z., Zhu, X., Srivastava, A., Liu, Q., Sweat, J. M., Pandharkar, T., Stephens, C. E., Riccio, E., Parman, T., Munde, M., Mandal, S., Madhubala, R., Tidwell, R. R., Wilson, W. D., Boykin, D. W., Hall, J. E., Kyle, D. E. and Werbovetz, K. A. (2010). Novel arylimidamides for treatment of visceral leishmaniasis. Antimicrobial Agents and Chemotherapy 54, 25072516.CrossRefGoogle ScholarPubMed
Werbovetz, K. (2006). Diamidines as antitrypanosomal, antileishmanial and antimalarial agents. Current Opinion in Investigational Drugs 6, 147157.Google Scholar
Wilson, W. D., Tanious, F. A., Mathis, A., Tevis, D., Hall, J. E. and Boykin, D. W. (2008). Antiparasitic compounds that target DNA. Biochimie 90, 9991014.CrossRefGoogle ScholarPubMed
Witola, W. H., Inoue, N., Ohashi, K. and Onuma, M. (2004). RNA-interference silencing of the adenosine transporter-1 gene in Trypanosoma evansi confers resistance to diminazene aceturate. Experimental Parasitology 107, 4757.CrossRefGoogle ScholarPubMed