Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T09:06:16.609Z Has data issue: false hasContentIssue false

Analysis of lectin- and snail plasma-binding glycopeptides associated with the tegumental surface of the primary sporocysts of Schistosoma mansoni

Published online by Cambridge University Press:  06 April 2009

L. A. Johnston
Affiliation:
Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive West, Madison, WI 53706, USA
T. P. Yoshino*
Affiliation:
Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive West, Madison, WI 53706, USA
*
* Corresponding author. Tel: 608 263 6002, Fax: 608 263 1286, E-mail: yoshinot@svm.vetmed.wisc.edu.

Summary

Carbohydrates associated with the tegumental surface of Schistosoma mansoni primary sporocyst may serve as potential receptors for mediating recognition by the internal defence system of the molluscan host, Biomphalaria glabrata. Therefore, a combination of SDS-PAGE and lectin probe analyses were carried out on biotin-labelled tegumental glycopeptides as a first step to defining the carbohydrates expressed at the sporocyst surface. The majority of surface polypeptides, ranging in relative molecular masses from 27 to 113 kDa, reacted with horseradish peroxidase-labelled Canavalia ensiformis (Con A), Erythrina corallodendron (ECA), Glycine max (SBA) and Triticum vulgaris (WGA) lectins indicating that most, if not all, tegumental proteins are glycosylated. However, differences in the binding of some lectins to individual glycopeptides suggest a degree of heterogeneity in the structure/composition of sugar moieties comprising these surface glycoconjugates. This notion is supported by the finding that the fucose-specific Tetragonolobus purpureas (TPA) lectin only reacted with approximately 50% of glycopeptides identified at the tegumental surface. Experiments employing biotin-labelled plasma (cell-free haemolymph) from S. mansoni-susceptible and -resistant B. glabrata snails as probes, further demonstrated that many of the identified surface glycoproteins also serve as plasma-binding sites for both snail strains. Binding interactions between plasma and sporocyst surface glycoproteins appeared to be, at least in part, mediated by carbohydrates since periodate treatment of sporocyst proteins or pre-incubation of plasma with the glycoproteins, fetuin or mucin, resulted in a decrease in plasma reactivity to blotted larval proteins.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Basch, P. F. (1991). Schistosomes Development Reproduction and Host Relations. New York, Oxford: Oxford University Press.Google Scholar
Bayne, C. J., Buckley, P. M. & Dewan, P. C. (1980). Schistosoma mansoni: cytotoxicity of hemocytes from susceptible snail hosts for sporocyst in plasma from resistant Biomphalaria glabrata. Experimental Parasitology 50, 409–16.CrossRefGoogle ScholarPubMed
Bayne, C. J. & Hull, C. J. (1988). The host-parasite interface in molluscan schistosomiasis: biotin as a probe for sporocyst and hemocyte surface peptides. Veterinary Parasitology 29, 131–42.CrossRefGoogle ScholarPubMed
Bayne, C. J., Loker, E. S. & Yui, M. A. (1986). Interactions between the plasma proteins of Biomphalaria glabrata (Gastropoda) and the sporocyst tegument of Schistosoma mansoni (Trematoda). Parasitology 92, 653–64.CrossRefGoogle ScholarPubMed
Bayne, C. J. & Yoshino, T. P. (1989). Determinants of compatibility in mollusc-trematode parasitism. American Zoologist 29, 399407.CrossRefGoogle Scholar
Boswell, C. A. & Bayne, C. J. (1984). Isolation, characterization and functional assessment of a hemagglutinin from the plasma of Biomphalaria glabrata, intermediate host of Schistosoma mansoni. Developmental and Comparative Immunology 8, 559–68.CrossRefGoogle ScholarPubMed
Boswell, C. A. & Bayne, C. J. (1985). Schistosoma mansoni: lectin-dependent cytotoxicity of hemocytes from susceptible host snails, Biomphalaria glabrata. Experimental Parasitology 60, 133–8.CrossRefGoogle ScholarPubMed
Boswell, C. A., Yoshino, T. P. & Dunn, T. S. (1987). Analysis of tegumental surface proteins of Schistosoma mansoni primary sporocysts. Journal of Parasitology 73, 778–86.CrossRefGoogle ScholarPubMed
Bretting, H., Stanislawski, E., Gacobs, G. & Becker, W. (1983). Isolation and characterization of a lectin from the snail Biomphalaria glabrata and a study of its combining site. Biochimica et Biophysica Acta 749, 143–52.CrossRefGoogle Scholar
Chernin, E. (1963). Observations on hearts explanted in vitro from the snail Australorbis glabratus. Journal of Parasitology 49, 353–64.CrossRefGoogle ScholarPubMed
Couch, L., Hertel, L. A. & Loker, E. S. (1990). Humoral response of the snail Biomphalaria glabrata to trematode infection: observations on a circulating hemagglutinin. Journal of Experimental Zoology 255, 340–9.CrossRefGoogle ScholarPubMed
Daniel, B. E., Preston, T. M. & Southgate, V. R. (1992). The in vitro transformation of the miracidum to the mother sporocyst of Schistosoma margrebowiei: Changes in the parasite surface and implications for interactions with snail plasma factors. Parasitology 104, 41–9.CrossRefGoogle Scholar
Fryer, S. E. & Bayne, C. J. (1990). Schistosoma mansoni modulation of phagocytosis in Biomphalaria glabrata. Journal of Parasitology 76, 4552.CrossRefGoogle ScholarPubMed
Granath, G. O. & Yoshino, T. P. (1984). Schistosoma mansoni: passive transfer of resistance by serum in the vector snail, Biomphalaria glabrata. Experimental Parasitology 58, 188–93.CrossRefGoogle ScholarPubMed
Hertel, L. A., Stricker, S. A., Monroy, F. P., Wilson, W. D. & Loker, E. S. (1994). Biomphalaria glabrata hemolymph lectins: Binding to bacteria, mammalian erythrocytes, and to sporocysts and rediae of Echinostoma paraensei. Journal of Invertebrate Pathology 64, 5261.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680–5.CrossRefGoogle ScholarPubMed
Lodes, M. J. & Yoshino, T. P. (1989). Characterization of excretory-secretory proteins synthesized in vitro by Schistosoma mansoni primary sporocysts. Journal of Parasitology 75, 853–62.CrossRefGoogle ScholarPubMed
Loker, E. S. (1994). On being a parasite in an invertebrate host: a short survival course. Journal of Parasitology 80, 728–47.CrossRefGoogle Scholar
Loker, E. S. & Bayne, C. J. (1982). In vitro encounters between Schistosoma mansoni primary sporocyst and hemolymph components of susceptible and resistant strains of Biomphalaria glabrata. American Journal of Tropical Medicine and Hygiene 31, 9991005.CrossRefGoogle ScholarPubMed
Loker, E. S., Bayne, C. J., Buckley, P. M. & Kruse, K. T. (1982). Ultrastructure of encapsulation of Schistosoma mansoni mother sporocysts by hemocytes of juveniles of the 10-R2 strains of Biomphalaria glabrata. Journal of Parasitology 68, 8494.CrossRefGoogle ScholarPubMed
Mansour, M. H., Nagm, H. I., Saad, A. H. & Taalab, N. I. (1995). Characterization of Biomphalaria alexandrina-derived lectins recognizing a fucosyllactose-related determinant on schistosomes. Molecular and Biochemical Parasitology 69, 173–84.CrossRefGoogle ScholarPubMed
Mattes, M. J. & Steiner, L. A. (1978). Antiserum to frog immunoglobulins cross-react with periodate-sensitive cell surface determinants. Nature, London 273, 761–3.CrossRefGoogle Scholar
Monroy, F., Hertel, L. A. & Loker, E. S. (1992). Carbohydrate-binding plasma proteins from the gastropod Biomphalaria glabrata: strain specificity and the effects of trematode infection. Developmental and Comparative Immunology 16, 355–66.CrossRefGoogle ScholarPubMed
Nyame, K., Cummings, R. D. & Damian, R. T. (1988). Characterization of the high mannose asparagine-linked oligosaccharides synthesized by Schistosoma mansoni adult male worms. Molecular and Biochemical Parasitology 28, 265–74.CrossRefGoogle ScholarPubMed
Nicholson, G. L. (1974). The interactions of lectins with animal cell surfaces. International Review for Cytology 39, 89190.CrossRefGoogle Scholar
Nolan, L. E. & Carriker, J. P. (1946). Observations on the biology of the snail Lymnaea stagnalis appressa during twenty years of laboratory culture. American Midland Naturalist 36, 467–93.CrossRefGoogle Scholar
Osawa, T. & Tsuji, T. (1987). Fractionation and structural assessment of oligosaccharides and glycopeptides by use of immobilized lectins. Annual Review of Biochemistry 56, 2142.CrossRefGoogle ScholarPubMed
Renwrantz, L. & Stahmer, A. (1983). Opsonizing properties of an isolated hemolymph agglutinin and demonstration of lectin-like recognition molecules at the surface of hemocytes from Mytilus edulis. Journal of Comparative Physiology 149, 535–6.CrossRefGoogle Scholar
Rice, K. G., Rao, N. B. N. & Lee, Y. C. (1990). Large-scale preparation and characterization of N-linked glycoproteins from bovine fetuin. Analytical Biochemistry 184, 249–58.CrossRefGoogle Scholar
Richards, E. H. & Renwrantz, L. R. (1991). Two lectins on the surface of Helix pomatia haemocytes: A Ca2+-dependent, GalNac-specific lectin and a Ca2+-independent mannose-6-phosphate-specific lectin which recognizes activated homologous opsonins. Journal of Comparative Physiology 161, 4354.CrossRefGoogle Scholar
Savage, M. D., Mattson, G., Desai, S., Nielander, G. W., Morgensen, S. & Conklin, E. J. (1992). Biotinylation reagents. In Avidin-Biotin Chemistry: A Handbook, pp. 2588. Rockford, Illinois: Pierce Chemical Company.Google Scholar
Sminia, T. & Barendsen, L. (1980). A comparative morphological and enzyme histochemical study on blood cells of the freshwater snail Lymnaea stagnalis, Biomphalaria glabrata and Bulinus truncatus. Journal of Morphology 165, 31–9.CrossRefGoogle Scholar
Spray, F.J. & Granath, W. O. (1988). Comparison of haemolymph proteins from Schistosoma mansoni (Trematoda)-susceptible and resistant Biomphalaria glabrata (Gastropoda). Comparative Biochemical Physiology 91, 619–24.Google ScholarPubMed
Spray, F. J. & Granath, W. O. (1990). Differential binding of hemolymph proteins from schistosome-resistant and -susceptible Biomphalaria glabrata to Schistosoma mansoni sporocysts. Journal of Parasitology 76, 225–9.CrossRefGoogle ScholarPubMed
Tuan, T. & Yoshino, T. P. (1987). Role of divalent cations in plasma opsonin-dependent and -independent erythrophagocytosis by hemocytes of the Asian clam, Corbicula fluminae. Journal of Invertebrate Pathology 50, 310–19.CrossRefGoogle Scholar
Uchikawa, R. & Loker, E. S. (1991). Lectin-binding properties of the surfaces of in vitro-transformed Schistosoma mansoni and Echinostoma paraensei sporocysts. Journal of Parasitology 77, 742–8.CrossRefGoogle ScholarPubMed
Van Der Knaap, W. P. W. & Loker, E. S. (1990). Immune mechanisms in trematode-snail interactions. Parasitology Today 6, 175–83.CrossRefGoogle ScholarPubMed
Weiss, J. B., Magnani, J. L. & Strand, M. (1986). Identification of Schistosoma mansoni glycolipids that share immunogenic carbohydrate epitopes with glycoproteins. Journal of Immunology 136, 4275–82.CrossRefGoogle ScholarPubMed
Yoshino, T. P. (1981). Comparison of Concanavalin A-reactive determinants on hemocytes of two Biomphalaria glabrata snail stocks: Receptor binding and redistribution. Developmental and Comparative Immunology 5, 229–39.CrossRefGoogle ScholarPubMed
Yoshino, T. P., Cheng, T. C. & Renwrantz, L. R. (1977). Lectin and human blood group determinants of Schistosoma mansoni: alteration following in vitro transformation of miracidium to mother sporocyst. Journal of Parasitology 63, 818–24.CrossRefGoogle ScholarPubMed
Yoshino, T. P. & Vasta, G. R. (1996). Parasite-invertebrate host immune interactions. In Invertebrate Immune Responses, Vol. 2 (ed. Cooper, E. L.) Heidelberg: Springer-Verlag. (in the Press.)Google Scholar
Zelck, U. & Becker, W. (1990). Lectin binding to cells of Schistosoma mansoni sporocysts and surrounding Biomphalaria glabrata tissue. Journal of Invertebrate Pathology 55, 93–9.CrossRefGoogle ScholarPubMed