Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T10:46:43.878Z Has data issue: false hasContentIssue false

Detection of seminal fluid proteins in the bed bug, Cimex lectularius, using two-dimensional gel electrophoresis and mass spectrometry

Published online by Cambridge University Press:  18 December 2008

K. REINHARDT*
Affiliation:
University of Sheffield, Department of Animal and Plant Sciences, Western Bank, SheffieldS10 2TN, UK
C. H. WONG
Affiliation:
University of Sheffield, Academic Unit of Reproductive and Developmental Medicine, The Jessop Wing, Tree Root Walk, SheffieldS10 2SF, UK
A. S. GEORGIOU
Affiliation:
University of Sheffield, Academic Unit of Reproductive and Developmental Medicine, The Jessop Wing, Tree Root Walk, SheffieldS10 2SF, UK
*
*Corresponding author: University of Sheffield, Department of Animal and Plant Sciences, Western Bank, Sheffield S10 2TN, UK. Tel: +44 114 222 4778. Fax: +44 114 222 0002. E-mail: k.reinhardt@sheffield.ac.uk

Summary

The global increase of the human parasite, the common bed bug Cimex lectularius, calls for specific pest control target sites. The bed bug is also a model species for sexual conflict theory which suggests that seminal fluids may be highly diverse. The species has a highly unusual sperm biology and seminal proteins may have unique functions. One-dimensional PAGE gels showed 40–50% band sharing between C. lectularius and another cimicid species, Afrocimex constrictus. However, adult, sexually rested C. lectularius males were found to store 5–7 μg of seminal protein and with only 60 μg of protein we obtained informative 2-D PAGE gels. These showed 79% shared protein spots between 2 laboratory populations, and more than half of the shared protein spots were detected in the mated female. Further analysis using liquid chromatography electrospray ionization tandem mass spectrometry revealed that 26·5% of the proteins had matches among arthropods in databases and 14·5% matched Drosophila proteins. These included ubiquitous proteins but also those more closely associated with reproduction such as moj 29, ubiquitin, the stress-related elongation factor EF-1alpha, a protein disulfide isomerase and an antioxidant, Peroxiredoxin 6.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrés, J. A., Maroja, L. S., Bogdanowicz, S. M., Swanson, W. J. and Harrison, R. G. (2006). Molecular evolution of seminal proteins in field crickets. Molecular Biology and Evolution 23, 15741584.CrossRefGoogle ScholarPubMed
Braswell, W. E., Andrés, J. A., Maroja, L. S., Harrison, R. G., Howard, D. J. and Swanson, W. J. (2006). Identification and comparative analysis of accessory gland proteins in Orthoptera. Genome 49, 10691080.CrossRefGoogle ScholarPubMed
Chapman, T. (2006). Sexual conflict. Nature 439, 537.CrossRefGoogle Scholar
Chapman, T. and Davies, S. J. (2004). Functions and analysis of the seminal fluid proteins of male Drosophila melanogaster fruit flies. Peptides 25, 14771490.CrossRefGoogle ScholarPubMed
Chapman, T., Hutchings, J. and Partridge, L. (1993). No reduction in the cost of mating for Drosophila melanogaster females mating with spermless males. Proceedings of the Royal Society of London, B 253, 211217.Google ScholarPubMed
Cheeseman, M. T. and Gillott, C. (1989). Long hyaline gland discharge and multiple spermatophore formation by the male grasshopper, Melanoplus sanguinipes. Physiological Entomology 14, 257264.CrossRefGoogle Scholar
Chen, P. S. (1984). The functional morphology and biochemistry of insect male accessory glands and their secretions. Annual Review of Entomology 29, 233255.CrossRefGoogle Scholar
Civetta, A. and Singh, R. S. (1995). High divergence of reproductive tract proteins and their association with postzygotic reproductive isolation in Drosophila melanogaster and Drosophila virilis group species. Journal of Molecular Evolution 41, 10851095.CrossRefGoogle ScholarPubMed
Collins, A. M., Caperna, T. J., Williams, V., Garrett, W. M. and Evans, J. D. (2006). Proteomic analyses of male contributions to honey bee sperm storage and mating. Insect Molecular Biology 15, 541549.CrossRefGoogle ScholarPubMed
Davis, N. T. (1966). Reproductive physiology. In Monograph of the Cimicidae (ed. Usinger, R.L.), pp. 167182. Entomological Society of America, Philadelphia, PA, USA.Google Scholar
Domon, B. and Aebersold, R. (2006). Review – mass spectrometry and protein analysis. Science 312, 212217.CrossRefGoogle ScholarPubMed
Dorus, S., Busby, S. A., Gerike, U., Shabanowitz, J., Hunt, D. F. and Karr, T. L. (2006). Genomic and functional evolution of the Drosophila melanogaster sperm proteome. Nature Genetics 38, 14401445.CrossRefGoogle ScholarPubMed
Dottorini, T., Nicolaides, L., Ranson, H., Rogers, D. W., Crisanti, A. and Catteruccia, F. (2007). A genome-wide analysis in Anopheles gambiae mosquitoes reveals 46 male accessory gland genes, possible modulators of female behavior. Proceedings of the National Academy of Sciences, USA 104, 1621516220.CrossRefGoogle ScholarPubMed
Findlay, G. D., Yi, X., MacCross, M. J. and Swanson, W. J. (2008). Proteomics reveals novel Drosophila seminal fluid proteins transferred at mating. PLoS Biology 6, e1781, –10.CrossRefGoogle ScholarPubMed
Fiumera, A. C., Dumont, B. L. and Clark, A. G. (2005). Sperm competitive ability in Drosophila melanogaster associated with variation in male reproductive proteins. Genetics 169, 243257.CrossRefGoogle ScholarPubMed
Fry, C. L. and Wilkinson, G. S. (2004). Sperm survival in female stalk-eyed flies depends on seminal fluid and meiotic drive. Evolution 58, 16221626.Google ScholarPubMed
Gillott, C. (2003). Male accessory gland secretions: modulators of female reproductive physiology and behavior. Annual Review of Entomology 48, 163184.CrossRefGoogle ScholarPubMed
Hartmann, R. and Loher, W. (1999). Post-mating effects in the grasshopper, Gomphocerus rufus L. mediated by the spermatheca. Journal of Comparative Physiology A 184, 325332.CrossRefGoogle Scholar
Haerty, W., Jagadeeshan, S., Kulathinal, R. J., Wong, A., Ram, K. R., Sirot, L. K., Levesque, L., Artieri, C. G., Wolfner, M. F., Civetta, A. and Singh, R. S. (2007). Evolution in the fast lane: rapidly evolving sex-related genes in drosophila. Genetics 177, 13211335.CrossRefGoogle ScholarPubMed
Holland, B. and Rice, W. R. (1998). Perspective: chase-away sexual selection: antagonistic seduction versus resistance. Evolution 52, 17.Google ScholarPubMed
Kawazu, S., Komaki-Yasuda, K., Oku, H. and Kano, S. (2008). Peroxiredoxins in malaria parasites: parasitologic aspects. Parasitology International 57, 17.CrossRefGoogle ScholarPubMed
Lange, A. B. and Loughton, B. G. (1984). An analysis of the secretions of the male accessory reproductive gland of the African migratory locust. International Journal of Invertebrate Reproduction and Development 7, 7381.CrossRefGoogle Scholar
Lange, A. B. and Loughton, B. G. (1985). An oviposition-stimulating factor in the male accessory reproductive gland of the locust, Locusta migratoria. General and Comparative Endocrinology 57, 208215.CrossRefGoogle ScholarPubMed
Lippert, T., Seeger, H., Schieferstein, G. and Voelter, W. (1993). Immunoreactive ubiquitin in human seminal plasma. Journal of Andrology 14, 130131.CrossRefGoogle ScholarPubMed
Morrow, E. H. and Arnqvist, G. (2003). Costly traumatic insemination and a female counteradaptation in bed bugs. Proceedings of the Royal Society of London, B 270, 23772381.CrossRefGoogle Scholar
Mueller, J. L., Ravi-Ram, K., McGraw, L. A., Qazi, M. C. B., Siggia, E. D., Clark, A. G., Aquadro, C. F. and Wolfner, M. F. (2005). Cross-species comparison of Drosophila male accessory gland protein genes. Genetics 171, 131143.CrossRefGoogle ScholarPubMed
Muratori, M., Marchiani, S., Forti, G. and Baldi, E. (2005). Sperm ubiquitination positively correlates to normal morphology in human semen. Human Reproduction 20, 10351043.CrossRefGoogle ScholarPubMed
Neubaum, D. M. and Wolfner, M. F. (1999). Wise, winsome, or weird? Mechanisms of sperm storage in female animals. Current Topics in Developmental Biology 41, 6797.CrossRefGoogle ScholarPubMed
Pappin, D. J., Hojrup, P. and Bleasby, A. J. (1993). Rapid identification of proteins by peptide-mass fingerprinting. Current Biology 3, 327332.CrossRefGoogle ScholarPubMed
Poiani, A. (2006). Complexity of seminal fluid: a review. Behavioral Ecology and Sociobiology 60, 289310.CrossRefGoogle Scholar
Prout, T. and Clark, A. G. (2000). Seminal fluid causes temporarily reduced egg hatch in previously mated females. Proceedings of the Royal Society of London, B 267, 201203.CrossRefGoogle ScholarPubMed
Qazi, M. C. B., Heifetz, Y. and Wolfner, M. F. (2003). The developments between gametogenesis and fertilization: ovulation and female sperm storage in Drosophila melanogaster. Developmental Biology 256, 195211.CrossRefGoogle Scholar
Rao, H. V. and Davis, N. T. (1969). Sperm activation and migration in bed bugs. Journal of Insect Physiology 15, 18151832.CrossRefGoogle Scholar
Reinhardt, K. and Siva-Jothy, M. T. (2007). Biology of the bed bugs (Cimicidae). Annual Review of Entomology 52, 351374.CrossRefGoogle ScholarPubMed
Reinhardt, K., Naylor, R. A. and Siva-Jothy, M. T. (2003). Reducing a cost of traumatic insemination: female bedbugs evolve a unique organ. Proceedings of the Royal Society of London, B 270, 23712375.CrossRefGoogle ScholarPubMed
Reinhardt, K., Naylor, R. A. and Siva-Jothy, M. T. (2005). Potential sexual transmission of environmental microbes in a traumatically inseminating insect. Ecological Entomology 30, 607611.CrossRefGoogle Scholar
Reinhardt, K., Naylor, R. A. and Siva-Jothy, M. T. (2007). Estimating the mean abundance and feeding rate of a temporal ectoparasite in the wild: Afrocimex constrictus (Heteroptera: Cimicidae). International Journal for Parasitology 37, 937942.CrossRefGoogle ScholarPubMed
Rice, W. R. (1992). Sexually antagonistic genes: experimental evidence. Science 256, 14361439.CrossRefGoogle ScholarPubMed
Rice, W. R. (1996). Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature, London 381, 232234.CrossRefGoogle ScholarPubMed
Ruknudin, A. and Raghavan, V. V. (1988). Initiation, maintenance and energy-metabolism of sperm motility in the bed bug, Cimex hemipterus. Journal of Insect Physiology 34, 137142.CrossRefGoogle Scholar
Sawada, H., Sakai, N., Abe, Y., Tanaka, E., Takahashi, Y., Fujino, J., Kodama, E., Takizawa, S. and Yokosawa, H. (2002). Extracellular ubiquitination and proteasome-mediated degradation of the ascidian sperm receptor. Proceedings of the National Academy of Sciences, USA 99, 12231228.CrossRefGoogle ScholarPubMed
Shikama, N., Ackermann, R. and Brack, C. (1994). Protein synthesis elongation factor EF-1a expression and longevity in Drosophila melanogaster. Proceedings of the National Academy of Sciences, USA 91, 41994203.CrossRefGoogle Scholar
Siva-Jothy, M. T. (2006). Trauma, disease and collateral damage: conflict in cimcids. Philosophical Transactions of the Royal Society of London, B 361, 269275.CrossRefGoogle Scholar
Stearns, S. C. and Kaiser, M. (1993). The effects of enhanced expression factor EF-1α on lifespan in Drosophila melanogaster. IV. A summary of three experiments. Genetica 91, 167182.CrossRefGoogle Scholar
Stutt, A. D. and Siva-Jothy, M. T. (2001). Traumatic insemination and sexual conflict in the bed bug Cimex lectularius. Proceedings of the National Academy of Sciences, USA 98, 56835687.CrossRefGoogle ScholarPubMed
Sutovsky, P. (2003). Ubiquitin-dependent proteolysis in mammalian spermatogenesis, fertilization, and sperm quality control: Killing three birds with one stone. Microscopy Research and Technique 61, 88102.CrossRefGoogle ScholarPubMed
Sutovsky, P., Hauser, R. and Sutovsky, M. (2004 a). Increased levels of sperm ubiquitin correlate with semen quality in men from an andrology laboratory clinic population. Human Reproduction 19, 628638.CrossRefGoogle ScholarPubMed
Sutovsky, P., Manandhar, G., McCauley, T. C., Caamano, J. N., Sutovsky, M., Thompson, W. E. and Day, B. N. (2004 b). Proteasomal interference prevents zona pellucida penetration and fertilization in mammals. Biology of Reproduction 71, 16251637.CrossRefGoogle ScholarPubMed
Sutovsky, P., Moreno, R., Ramalho-Santos, J., Dominko, T., Winston, W. E. and Schatten, G. (2001). A putative, ubiquitin-dependent mechanism for the recognition and elimination of defective spermatozoa in the mammalian epididymis. Journal of Cell Science 114, 16651675.CrossRefGoogle ScholarPubMed
Sutovsky, P., Turner, R. M., Hameed, S. and Sutovsky, M. (2003). Differential ubiquitination of stallion sperm proteins: Possible implications for infertility and reproductive seasonality. Biology of Reproduction 68, 688698.CrossRefGoogle ScholarPubMed
Swanson, W. J., Clark, A. G., Waldrip-Dail, H. M., Wolfner, M. F. and Aquadro, C. F. (2001). Evolutionary EST analysis identifies rapidly evolving male reproductive proteins in Drosophila. Proceedings of the National Academy of Sciences, USA 95, 40514054.Google Scholar
Talapatra, S., Wagner, J. D. O. and Thompson, C. B. (2002). Elongation factor-1 alpha is a selective regulator of growth factor withdrawal and ER stress-induced apoptosis. Cell Death and Differentiation 9, 856861.CrossRefGoogle ScholarPubMed
Tram, U. and Wolfner, M. F. (1998). Seminal fluid regulation of female sexual attractiveness in Drosophila melanogaster. Proceedings of the National Academy of Sciences, USA 95, 40514054.CrossRefGoogle ScholarPubMed
Viscuso, R., Narcisi, L., Sottile, L. and Brundo, M. V. (2001). Role of male accessory glands in spermatodesm reorganization in Orthoptera Tettigonioidea. Tissue & Cell 33, 3339.CrossRefGoogle ScholarPubMed
Usinger, R. L. (1966). Monograph of the Cimicidae. Entomological Society of America, Philadelphia, PA, USA.Google Scholar
Wagner, W. E., Kelley, R. J., Tucker, K. R. and Haper, C. J. (2001). Females receive a life-span benefit from male ejaculates in a field cricket. Evolution 55, 9941001.CrossRefGoogle Scholar
Wagstaff, B. J. and Begun, D. J. (2005). Molecular population genetics of accessory gland protein genes and testis-expressed genes in Drosophila mojavensis and D. arizonae. Genetics 171, 10831101.CrossRefGoogle ScholarPubMed
Walker, M. J., Rylett, C. M., Keen, J. N., Audsley, N., Sajid, M., Shirras, A. D. and Isaac, R. E. (2006). Proteomic identification of Drosophila melanogaster male accessory gland proteins, including a pro-cathepsin and a soluble gamma-glutamyl transpeptidase. Proteome Science 2, 110.Google Scholar
Wang, H. D., Kazemi-Esfarjani, P. and Benzer, S. (2004). Multiple-stress analysis for isolation of Drosophila longevity genes. Proceedings of the National Academy of Sciences, USA 101, 1261012615.CrossRefGoogle ScholarPubMed
Wolfner, M. F. (2002). The gifts that keep on giving: physiological functions and evolutionary dynamics of male seminal proteins in Drosophila. Heredity 88, 8593.CrossRefGoogle ScholarPubMed