Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T13:08:42.032Z Has data issue: false hasContentIssue false

Differential targeting of dense granule proteins in the parasitophorous vacuole of Toxoplasma gondii

Published online by Cambridge University Press:  06 April 2009

A. Achbarou
Affiliation:
Unité 42 INSERM, 369 rue Jules Guesde, 59650 Villeneuve d'ascq, France
O. Mercereau-Puijalon
Affiliation:
Département de Parasitologie Expérimentale, Institut Pasteur, 28 rue du Dr. Roux, 75015 Paris, France
A. Sadak
Affiliation:
Unité 42 INSERM, 369 rue Jules Guesde, 59650 Villeneuve d'ascq, France
B. Fortier
Affiliation:
Unité 42 INSERM, 369 rue Jules Guesde, 59650 Villeneuve d'ascq, France
M. A. Leriche
Affiliation:
Unité 42 INSERM, 369 rue Jules Guesde, 59650 Villeneuve d'ascq, France
D. Camus
Affiliation:
Unité 42 INSERM, 369 rue Jules Guesde, 59650 Villeneuve d'ascq, France
J. F. Dubremetz
Affiliation:
Unité 42 INSERM, 369 rue Jules Guesde, 59650 Villeneuve d'ascq, France

Extract

The biosynthesis and fate of 4 different dense granule proteins of Toxoplasma gondii were studied with 3 monoclonal antibodies raised against tachyzoites and 1 polyclonal antibody raised against a recombinant protein. These proteins have the following molecular weights: 27 kDa (GRA 1), 28 kDa (GRA 2), 30 kDa (GRA 3) and 40 kDa (GRA 4). All four proteins were found in dense granules by immunoelectron microscopy; in T. gondii-infected cells, they were found in the vacuolar network but, in addition, GRA 3 was also detected on the parasitophorous vacuole membrane. Therefore, dense granule contents undergo differential targeting when exocytosed in the parasitophorous vacuole. Metabolic labelling and immunoprecipitation showed that GRA 2 and GRA 3 were processed from lower molecular weight precursors, and that GRA 2 and GRA 4 incorporated [3H] glucosamine and are thus likely to be glycosylated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aikawa, M., Torii, M., Sjolander, A., Bersins, K., Perlmann, P. & Miller, L. (1990). Pf155/RESA antigen is localized in dense granules of Plasmodium faciparum merozoites. Experimental Parasitology 71, 326–9.CrossRefGoogle Scholar
Bannister, L. H., Butcher, G. A., Dennis, E. D. & Mitchell, G. H. (1975). Structure and invasive behaviour of Plasmodium knowlesi merozoites in vitro. Parasitology 71, 483–91.CrossRefGoogle ScholarPubMed
Brown, G. V., Culvenor, J. G., Crewther, P. E., Bianco, A. E., Coppel, R. L., Saint, R. B., Stahl, H. D., Kemp, D. J. & Anders, R. F. (1985). Localization of the ring-infected erythrocyte surface antigen (RESA) of Plasmodium faciparum in merozoites and ring-infected erythrocytes. Journal of Experimental Medicine 162, 774–9.CrossRefGoogle Scholar
Cesbron-Delauw, M. F., Guy, B., Torpier, G., Pierce, R. J., Lenzen, G., Cesbron, J. Y., Charif, H., Lepage, P., Darcy, F., Lecocq, J. P. & Capron, A. (1989). Molecular characterization of a 23-kilodalton major antigen secreted by Toxoplasma gondii. Proceedings of the National Academy of Sciences, USA 86, 7537–41.CrossRefGoogle ScholarPubMed
Charif, H., Darcy, F., Torpier, G., Cesbron-Delauw, M. F. & Capron, A. (1990). Toxoplasma gondii: characterization and localization of antigens secreted from tachyzoites. Experimental Parasitology 71, 114–24.CrossRefGoogle ScholarPubMed
Cornelissen, A. W. C. A., Overdulve, J. P. & Hoenderboom, J. M. (1981). Separation of Isospora (Toxoplasma gondii) cysts and cystozoites from mouse brain tissue by continous density-gradient centrifugation. Parasitology 83, 103–8.CrossRefGoogle Scholar
Couzineau, P. & Baufine Ducrocq, H. (1969). Etude des possibilités d'utilisation du sarcome TG 180 de la souris. Application à la Toxoplasmose. Annales de Parasitologie Humaine et Comparée 44, 217–22.CrossRefGoogle Scholar
Culvenor, J. G., Day, K. P. & Anders, R. F. (1991). Plasmodium falciparum ring-infected erythrocyte surface antigen is released from merozoite dense granules after erythrocyte invasion. Infection and Immunity 59, 1183–7.CrossRefGoogle ScholarPubMed
Entzeroth, R., Dubremetz, J. F., Hodick, D. & Ferreira, E. (1986). Immunoelectronmicroscopic demonstration of the exocytosis of dense granules contents into the secondary parasitophorous vacuole of Sarcocystis muris (Protozoa, Apicomplexa). European Journal of Cell Biology 41, 182–8.Google Scholar
Grimmwood, B. G., Hechemy, K. & Stevens, R. W. (1979). Toxoplasma gondii: purification of trophozoites propagated in cell culture. Experimental Parasitology 48, 282–6.CrossRefGoogle Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680–5.CrossRefGoogle ScholarPubMed
Laskey, R. A. & Mills, A. D. (1975). Quantitative film detection of [3H] and [14C] in polyacrylamide gels by fluorography. European Journal of Biochemistry 56, 335–41.CrossRefGoogle ScholarPubMed
Laugier, M. & Quilici, M. (1970). Intérêt expérimental d'une sourche de Toxoplasme peu patogeine pour la souris. Annales de Parasitologie Humaine et Comparée 45, 389403.CrossRefGoogle Scholar
Leriche, M. A. & Dubremetz, J. F. (1990). Exocytosis of dense granules after host-cell invasion by Toxoplasma gondii. Parasitology Research 76, 559–62.CrossRefGoogle ScholarPubMed
Leriche, M. A. & Dubremetz, J. F. (1991). Characterization of the proteins of rhoptries and dense granules of Toxoplasma gondii tachyzoites by subcellular fractionation and monoclonal antibodies. Molecular and Biochemical Parasitology 45, 249–60.CrossRefGoogle ScholarPubMed
Prince, L. D., Araujo, F. J., Remington, J. S., Burg, J. L., Boothroyd, J. C. & Sharma, S. D. (1989). Cloning of cDNA encoding a 28-kilodalton antigen of Toxoplasma gondii. Molecular and Biochemical Parasitology 34, 313.CrossRefGoogle Scholar
Sabin, A. B. (1941). Toxoplasmic encephalitis in children. Journal of the American Medical Association 116, 801–7.CrossRefGoogle Scholar
Sadak, A., Taghy, Z., Fortier, N. & Dubremetz, J. F. (1988). Characterization of a family of rhoptry proteins of Toxoplasma gondii. Molecular and Biochemical Parasitology 29, 203–11.CrossRefGoogle ScholarPubMed
Sibley, L. D. & Krahenbuhl, J. L. (1988). Modification of host cell phagosomes by Toxoplasma gondii involves redistribution of surface proteins and secretion of a 32 kDa protein. European Journal of Cell Biology 47, 81–7.Google ScholarPubMed
Sibley, L. D., Krahenbuhl, J. L., Adams, G. M. W. & Weidner, E. (1986). Toxoplasma modifies macrophage phagosomes by secretion of a vesicular network rich in surface proteins. Journal of Cell Biology 103, 867–74.CrossRefGoogle Scholar
Tomavo, S., Schwarz, R. T. & Dubremetz, J. F. (1989). Evidence for glycosyl phosphatidyl inositol anchor of Toxoplasma gondii major surface antigens. Molecular and Cellular Biology 9, 4576–80.Google ScholarPubMed
Torii, M., Adams, J. H., Miller, L. H. & Aikawa, M. (1989). Release of merozoite dense granules during erythrocyte invasion by Plasmodium knowlesi. Infection and Immunity 57, 3230–3.CrossRefGoogle ScholarPubMed
Towbin, H., Staehelin, T. & Gordon, J. (1978). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, USA 76, 4350–4.CrossRefGoogle Scholar