Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T05:44:38.124Z Has data issue: false hasContentIssue false

Evolution of host range in the follicle mite Demodex kutzeri

Published online by Cambridge University Press:  29 November 2016

MICHAEL F. PALOPOLI*
Affiliation:
Department of Biology, Bowdoin College, Brunswick, ME, USA
VAN TRA
Affiliation:
Department of Biology, Bowdoin College, Brunswick, ME, USA
KASSEY MATOIN
Affiliation:
Department of Biology, Bowdoin College, Brunswick, ME, USA
PHUONG D. MAC
Affiliation:
Department of Biology, Bowdoin College, Brunswick, ME, USA
*
*Corresponding author: Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA. E-mail: mpalopol@bowdoin.edu

Summary

The sequences of four mitochondrial genes were determined for Demodex mites isolated from two distantly related species within the family Cervidae, and identified morphologically as belonging to the species Demodex kutzeri. The sequences were used to test the hypothesis that Demodex are strictly host-specific, and hence cospeciate with their hosts: (1) The estimated divergence time between mites found on elk vs humans agreed closely with a previous estimate of the time that these host species last shared a common ancestor, suggesting cospeciation of mites and hosts, at least over long evolutionary timescales. (2) The extremely low levels of sequence divergence between the mites found on elk vs mule deer hosts indicated that these mites belong to the same species, which suggests that Demodex are able to move across host species boundaries over shorter timescales. Together, the results are consistent with the model that Demodex mites are not strict host-specialists, but instead lose the ability to move between host lineages gradually.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abernethy, K. (1994). The establishment of a hybrid zone between Red and Sika deer (genus Cervus). Molecular Ecology 3, 551562.Google Scholar
Barriga, O. O., Al-Khalidi, N. W., Martin, S. and Wyman, M. (1992). Evidence of immunosuppression by Demodex canis . Veterinary Immunology and Immunopathology 32, 3746.CrossRefGoogle ScholarPubMed
Benmayor, R., Hodgson, D. J., Perron, G. G. and Buckling, A. (2009). Host mixing and disease emergence. Current Biology 19, 764767.Google Scholar
Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., Ingram, K. K. and Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution 22, 148155.Google Scholar
Bukva, V. (1987). Demodex kutzeri sp. n. (Acari: Demodicidae), an idenitical parasite of two species of deer, Cervus elaphus and C. nippon pseudaxis . Folia Parasitologica 34, 173181.Google Scholar
Bukva, V. (1990). Transmission of Demodex flagellurus (Acari: Demodicidae) in the house mouse, Mus musculus, under laboratory conditions. Experimental and Applied Acarology 10, 5360.Google Scholar
Bukva, V., Vitovec, J., Moucha, P. and Vahala, J. (1988). Pathological process induced by Demodex sp. (Acari: Demodicidae) in the skin of the eland, Taurotragus oryx (Pallas). Folia Parasitologica 35, 8791.Google ScholarPubMed
Combes, C. (2001). Parasitism: The Ecology and Evolution of Intimate Interactions. University of Chicago Press, Chicago.Google Scholar
Desch, C. E. (1987). Redescription of Demodex nanus (Acari: Demodicidae) from Rattus norvegicus and R. rattus (Rodentia). Journal of Medical Entomology 24, 1923.Google Scholar
Desch, C. E. (2009). Human hair follicle mites and forensic acarology. Experimental and Applied Acarology 49, 143146.CrossRefGoogle ScholarPubMed
Desch, C. E. and Nutting, W. B. (1972). Demodex folliculorum (Simon) and D. brevis Akbulatova of man: redescription and reevalution. Journal of Parasitology 58, 169177.CrossRefGoogle Scholar
Desch, C. E., Lukoschus, F. S. and Nadchatram, M. (1984). A new demodicid (Acari: Demodicidae) from the meibomian glands of Southeast Asian rats (Rodentia: Muridae). Tropical Biomedicine 1, 5562.Google Scholar
Desch, C. E., Andrews, J. J., Baeten, L. A., Holder, Z., Powers, J. G., Weber, D. and Ballweber, L. R. (2010). New records of hair follicle mites (Demodecidae) from North American Cervidae. Journal of Wildlife Diseases 46, 585590.Google Scholar
dos Reis, M., Inoue, J., Hasegawa, M., Asher, R. J., Donoghue, P. C. J. and Yang, Z. (2012). Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proceedings of the Royal Society of London B: Biological Sciences 279, 34913500.Google ScholarPubMed
Drummond, A. J., Suchard, M. A., Xie, D. and Rambaut, A. (2012). Bayesian phylogenetics with BEAUTi and the BEAST 1·7. Molecular Biology and Evolution 29, 19691973.CrossRefGoogle ScholarPubMed
Dunlop, J. A. and Selden, P. A. (2009). Calibrating the chelicerate clock: a paleontological reply to Jeyaprakash and Hoy. Experimental and Applied Acarology 48, 183197.Google Scholar
Ferreira, D., Sastre, N., Ravera, I., Altet, L., Francino, O., Bardagí, M. and Ferrer, L. (2015). Identification of a third feline Demodex species through partial sequencing of the 16S rDNA and frequency of Demodex species in 74 cats using a PCR assay. Veterinary Dermatology 26, 239–e53.Google Scholar
Garamszegi, L. Z. (2006). The evolution of virulence and host specialization in malaria parasites of primates. Ecology Letters 9, 933940.Google Scholar
Gilbert, C., Ropiquet, A. and Hassanin, A. (2006). Mitochondrial and nuclear phylogenies of Cervidae (Mammalia, Ruminantia): systematics, morphology, and biogeography. Molecular Phylogenetics and Evolution 40, 101117.Google Scholar
Ivy, S. P., Mackall, C. L., Gore, L., Gress, R. E. and Hartley, A. H. (1995). Demodicidosis in childhood acute lymphoblastic leukemia; an opportunistic infection occurring with immunosuppression. Journal of Pediatrics 127, 751754.Google Scholar
Jarmuda, S., O'Reilly, N., Zaba, R., Jakubowicz, O., Szkaradkiewicz, A. and Kavanagh, K. (2012). Potential role of Demodex mites and bacteria in the induction of rosacea. Journal of Medical Microbiology 61, 15041510.Google Scholar
Johnson, K. P., Allen, J. M., Olds, B. P., Mugisha, L., Reed, D. L., Paige, K. N. and Pittendrigh, B. R. (2014). Rates of genomic divergence in humans, chimpanzees and their lice. Proceedings of the Royal Society B: Biological Sciences 281, 20132174.CrossRefGoogle ScholarPubMed
Kim, K. T., Lee, S. H. and Kwak, D. (2015). Treatment of naturally acquired demodectic mange with amitraz in two harbour seals (Phoca vitulina). Acta Veterinaria Hungarica 63, 352357.CrossRefGoogle ScholarPubMed
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111120.Google Scholar
Lacey, N., Raghallaigh, S. N. and Powell, F. C. (2011). Demodex mites – commensals, parasites or mutualistic organisms? Dermatology 222, 128130.Google Scholar
Lankton, J. S., Chapman, A., Ramsay, E. C., Kania, S. A. and Newkirk, K. M. (2013). Preputial Demodex species in big brown bats (Eptesicus fuscus) in eastern Tennessee. Journal of Zoo and Wildlife Medicine 44, 124129.Google Scholar
Leggett, H. C., Buckling, A., Long, G. H. and Boots, M. (2013). Generalism and the evolution of parasite virulence. Trends in Ecology and Evolution 28, 592596.Google Scholar
Longdon, B., Hadfield, J. D., Webster, C. L., Obbard, D. J. and Jiggins, F. M. (2011). Host phylogeny determines viral persistence and replication in novel hosts. PLoS Pathogens 7, 19.Google Scholar
Matthes, H. F. (1994). Investigations of pathogenesis of cattle demodicosis: sites of predilection, habitat and dynamics of demodectic nodules. Veterinary Parasitology 53, 283291.Google Scholar
Nutting, W. B. (1976). Hair follicle mites (Demodex spp.) of medical and veterinary concern. The Cornell Veterinarian 66, 214231.Google Scholar
Nutting, W. B. and Desch, C. E. (1979). Relationships between mammalian and demodicid phylogeny. In Recent Advances in Acarology, Vol. 2 (ed. Rodriguez, J. G.), pp. 339345. Academic Press, New York.Google Scholar
Palopoli, M. F., Minot, S., Pei, D., Satterly, A. and Endrizzi, J. (2014). Complete mitochondrial genomes of the human follicle mites Demodex brevis and D. folliculorum: novel gene arrangement, truncated tRNA genes, and ancient divergence between species. BMC Genomics 15, 1124.Google Scholar
Palopoli, M. F., Fergus, D. J., Minot, S., Pei, D. T., Simisond, W. B., Fernandez-Silvad, I., Thoemmes, M. S., Dunn, R. R. and Trautwein, M. (2015). Global divergence of the human follicle mite Demodex folliculorum: persistent associations between host ancestry and mite lineages. Proceedings of the National Academy of Sciences of the United States of America 112, 1595815963.Google Scholar
Penn, O., Privman, E., Ashkenazy, H., Landan, G., Graur, D. and Pupko, T. (2010). GUIDANCE: a web server for assessing alignment confidence scores. Nucleic Acids Research 38, W23W28.Google Scholar
Perlman, S. J. and Jaenike, J. (2003). Infection success in novel hosts: an experimental and phylogenetic study of Drosophila-parasitic nematodes. Evolution 57, 544557.Google ScholarPubMed
Pitraa, C., Fickela, J., Meijaardb, E. and Groves, P. C. (2004). Evolution and phylogeny of old world deer. Molecular Phylogenetics and Evolution 33, 880895.Google Scholar
Singh, S. K. and Dimri, U. (2014). The immuno-pathological conversions of canine demodicosis. Veterinary Parasitology 203, 15.Google Scholar
Sorenson, M. D., Balakrishnan, C. N. and Payne, R. B. (2004). Clade-limited colonization in brood parasitic finches (Vidua spp.). Systematic Biology 53, 140153.Google Scholar
Spickett, S. G. (1961). Studies on Demodex folliculorum Simon. Parasitology 51, 181192.Google Scholar
Streicker, D. G., Turmelle, A. S., Vonhof, M. J., Kuzmin, I. V., McCracken, F. and Rupprecht, C. E. (2010). Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats. Science 329, 676679.Google Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30, 27252729.Google Scholar
Valerius, G. (1998). Deer of the World: Their Evolution, Behaviour, and Ecology. Stackpole Books, Mechanicsburg, PA.Google Scholar
Zhao, Y. E., Wu, L. P., Hu, L. and Xu, J. R. (2012). Association of blepharitis with Demodex: a meta-analysis. Ophthalmic Epidemiology 19, 95102.Google Scholar