Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T04:25:56.821Z Has data issue: false hasContentIssue false

Hairworm anti-predator strategy: a study of causes and consequences

Published online by Cambridge University Press:  25 July 2006

F. PONTON
Affiliation:
Génétique et Evolution des Maladies Infectieuses, UMR CNRS-IRD 2724, Equipe: ‘Evolution des Systèmes Symbiotiques’, IRD, 911 Avenue Agropolis, B.P. 64501, 34394 Montpellier Cedex 5, France
C. LEBARBENCHON
Affiliation:
Génétique et Evolution des Maladies Infectieuses, UMR CNRS-IRD 2724, Equipe: ‘Evolution des Systèmes Symbiotiques’, IRD, 911 Avenue Agropolis, B.P. 64501, 34394 Montpellier Cedex 5, France Station Biologique de la Tour du Valat, Le Sambuc, 13200 Arles, France
T. LEFÈVRE
Affiliation:
Génétique et Evolution des Maladies Infectieuses, UMR CNRS-IRD 2724, Equipe: ‘Evolution des Systèmes Symbiotiques’, IRD, 911 Avenue Agropolis, B.P. 64501, 34394 Montpellier Cedex 5, France
F. THOMAS
Affiliation:
Génétique et Evolution des Maladies Infectieuses, UMR CNRS-IRD 2724, Equipe: ‘Evolution des Systèmes Symbiotiques’, IRD, 911 Avenue Agropolis, B.P. 64501, 34394 Montpellier Cedex 5, France
D. DUNEAU
Affiliation:
Génétique et Evolution des Maladies Infectieuses, UMR CNRS-IRD 2724, Equipe: ‘Evolution des Systèmes Symbiotiques’, IRD, 911 Avenue Agropolis, B.P. 64501, 34394 Montpellier Cedex 5, France
L. MARCHÉ
Affiliation:
INRA, UMR BiO3P, Domaine de la Motte, BP 35327, 35653 Le Rheu Cedex, France
L. RENAULT
Affiliation:
INRA, UMR BiO3P, Domaine de la Motte, BP 35327, 35653 Le Rheu Cedex, France
D. P. HUGHES
Affiliation:
Centre for Social Evolution, Institute of Biology, Universitetsparken 15, DK-21000 Copenhagen
D. G. BIRON
Affiliation:
Génétique et Evolution des Maladies Infectieuses, UMR CNRS-IRD 2724, Equipe: ‘Evolution des Systèmes Symbiotiques’, IRD, 911 Avenue Agropolis, B.P. 64501, 34394 Montpellier Cedex 5, France

Abstract

One of the most fascinating anti-predator responses displayed by parasites is that of hairworms (Nematomorpha). Following the ingestion of the insect host by fish or frogs, the parasitic worm is able to actively exit both its host and the gut of the predator. Using as a model the hairworm, Paragordius tricuspidatus, (parasitizing the cricket Nemobius sylvestris) and the fish predator Micropterus salmoïdes, we explored, with proteomics tools, the physiological basis of this anti-predator response. By examining the proteome of the parasitic worm, we detected a differential expression of 27 protein spots in those worms able to escape the predator. Peptide Mass Fingerprints of candidate protein spots suggest the existence of an intense muscular activity in escaping worms, which functions in parallel with their distinctive biology. In a second step, we attempted to determine whether the energy expended by worms to escape the predator is traded off against its reproductive potential. Remarkably, the number of offspring produced by worms having escaped a predator was not reduced compared with controls.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barrett, J., Brophy, P. M. and Hamilton, J. V. ( 2005). Analysing proteomic data. International Journal for Parasitology 35, 543554.CrossRefGoogle Scholar
Becamel, C., Galeotti N., Poncet, J., Jouin, P., Dumuis, A., Bockaert, J. and Marin, P. ( 2002). A proteomic approach based on peptide affinity chromatography, 2-dimensional electrophoresis and mass spectrometry to identify multiprotein complexes interacting with membrane-bound receptors. Biological Procedures Online 4, 94106.CrossRefGoogle Scholar
Bertram, B. C. R. ( 1978). Living in groups: predators and prey. In Behavioural Ecology: an Evolutionary Approach ( ed. Krebs, J. R. and Davies, N. B.), pp. 6496. Blackwell Scientific Publications, Oxford.
Biron, D. G., Moura, H., Marché, L., Hughes, A. and Thomas, F. ( 2005 a). Towards a new conceptual approach to ‘parasitoproteomics’. Trends in Parasitology 21, 162168.Google Scholar
Biron, D. G., Joly, C., Marché, L., Galéotti, N., Calcagno, V., Schmidt-Rhaesa, A., Renault, L. and Thomas, F. ( 2005 b). First analysis of the proteome in two nematomorph species, Paragordius tricuspidatus (Chordodidae) and Spinochordodes tellinii (Spinochordodidae). Infection, Genetics and Evolution 5, 167175.Google Scholar
Biron D. G., Marché, L., Ponton, F., Loxdale, H., Galeotti, N., Renault, L., Joly, C. and Thomas, F. ( 2005 c). Behavioural manipulation in a grasshopper harbouring hairworm: a proteomics approach. Proceeding of the Royal Society of London, B 272, 21172126.Google Scholar
Bradford, M. M. ( 1976). A rapid and sensitive method for the quantification of microgram-quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle Scholar
Breakefield, X. O., Kamm, C. and Hanson, P. I. ( 2001). TorsinA: movement at many levels. Neuron 31, 912.CrossRefGoogle Scholar
Caro, T. M., Graham, C. M., Stoner, C. J. and Vargas, J. K. ( 2004). Adaptive significance of antipredator behaviour in artiodactyls. Animal Behaviour 67, 205228.CrossRefGoogle Scholar
Combes, C. ( 2001). Parasitism, The Ecology and Evolution of Intimate Interactions. The University of Chicago Press, London.
Curio, E. ( 1993). Proximate and developmental aspects of antipredator behavior. Advances in the Study of Behavior 22, 135238.CrossRefGoogle Scholar
Edmunds, M. ( 1974). Defence in Animals. Essex: Longman.
Elgar, M. A. ( 1989). Predator vigilance and group size in mammals and birds: a critical review of the empirical evidence. Biological Review 64, 1333.CrossRefGoogle Scholar
Francis, F., Gerkens, P., Harmel, N., Mazzucchelli, G., De Pauw, E. and Haubruge, E. ( 2006). Proteomics in Myzus persicae: Effect of aphid host plant switch. Insect Biochemistry and Molecular Biology 36, 219227.CrossRefGoogle Scholar
Garin, J., Ferro, M., Rolland, N. and Joyard, J. ( 2001). Stratégies en protéomique: outils, limites et développement. 1ère Ecole thématique de biologie végétale.
Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D. and Bairoch, A. ( 2005). Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook ( ed. Walker, J. M.), pp. 571607. Totowa, Humana Press, NJ- USA.CrossRef
Hanelt, B., Thomas, F. and Schmidt-Rhaesa, A. ( 2005). Biology of the Phylum Nematomorpha. Advances in Parasitology 59, 243305.CrossRefGoogle Scholar
Kavaliers, M. and Choleris, E. ( 2001). Antipredator responses and defensive behavior: ecological and ethological approaches for the neurosciences. Neuroscience and Biobehavioral Reviews 25, 577586.CrossRefGoogle Scholar
Lester, P. J. and Hubbard, S. J. ( 2002). Comparative bioinformatic analysis of complete proteomes and protein parameters for cross species identification in proteomics. Proteomics 2, 13921405.3.0.CO;2-L>CrossRefGoogle Scholar
Lind, J. and Cresswell, W. ( 2005). Determining the fitness consequences of antipredation behaviour. Behavioural Ecology 16, 945956.CrossRefGoogle Scholar
Magurran, A. E. ( 1999). The causes and consequences of geographic variation in antipredator behaviour. In Geographic Variation in Behavior. Perspectives on Evolutionary Mechanisms ( ed. Foster, S. A. and Endler, J. A.), pp. 139163.
Morin, P. J. ( 2003). Community Ecology, pp. 104135. Blackwell Science.
Oakley, B. R., Kirsch, B. R. and Moris, N. R. ( 1980). A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Analytical Biochemistry 105, 361363.CrossRefGoogle Scholar
Ponton, F., Lebarbenchon, C., Lefèvre, T., Biron, D. G., Duneau, D., Hughes, D. P. and Thomas, F. ( 2006). Parasite survives predation on its host. Nature, London 440, 756.CrossRefGoogle Scholar
Protasomi, M., De Eguileor, M., Cngiu, T., Grimaldi, A. and Reguzzoni, M. ( 2003). The extracellular matrix of the cuticle of Gordius panigettensis (Gordioiidae, Nematomorpha): observations by TEM, SEM and AFM. Tissue and Cell 35, 306311.CrossRefGoogle Scholar
Rabilloud, T., Vuillard, L., Gilly, C. and Lawrence, J. J. ( 1994). Silver-staining of proteins in polyacrylamide gels: a general overview. Cellular and Molecular Biology 40, 5775.Google Scholar
Schmidt-Rhaesa, A. ( 1997). Nematomorpha. In Sübwasserfauna Mitteleuropas 4/4 ( ed. Schwoerbel, J. and Zwick, P.), pp. 117. Gustav Fischer-Verlag, Stuttgart.
Schmidt-Rhaesa, A. ( 2001). The life cycle of horsehair worms (Nematomorpha). Acta Parasitologica 46, 151158.Google Scholar
Schmidt-Rhaesa, A. ( 2003). Ultrastructure of an integumental organ with probable sensory function in Paragordius varius (nematomorpha). Acta Zoologica 85, 1519.Google Scholar
Scott, G. ( 2005). Avoiding predation: staying alive against the odds. In Essential of Animal Behavior, pp. 143165. Blackwell Science, Oxford.
Sheterline, P., Clayton, J. and Sparrow, J. C. ( 1996). Actins 3rd Edn. Academic Press, London.
Shevchenko, A., Wilm, M., Vorm, O. and Mann, M. ( 1996). Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Analytical Chemistry 68, 850858.CrossRefGoogle Scholar
Stearns, S. C. ( 1992). The Evolution of Life Histories. Oxford University Press, Oxford.
Tastet, C., Bossis, M., Gauthier, J. P., Renault, L. and Mugniéry, D. ( 1999). Meloidogyne chitwoodi and M. fallax protein variation assessed by two-dimensional electrophoregram computed analysis. Nematology 1, 301314.Google Scholar
Thomas, F., Brown, S. P., Sukhdeo, M. and Renaud, F. ( 2002 a). Understanding parasite strategies: a state-dependent approach? Trends in Parasitology 18, 387390.Google Scholar
Thomas, F., Schmidt-Rhaesa, A., Martin, G., Manu, C., Durand, P. and Renaud, F. ( 2002 b). Do hairworms (Nematomorpha) manipulate the water seeking behaviour of their terrestrial hosts? Journal of Evolutionary Biology 15, 356361.Google Scholar
Thomas F., Ulitsky, P., Augier, R., Dusticier, N., Samuel, D., Strambi, C., Biron, D. G. and Cayre, M. ( 2003). Biochemical and histological changes in the brain of the cricket Nemobius sylvestris infected by the manipulative parasite Paragordius tricuspidatus (Nematomorpha). International Journal for Parasitology 33, 435443.CrossRefGoogle Scholar
West-Eberhard, M. J. ( 2003). Developmental Plasticity and Evolution. Oxford University Press, Oxford.
Wilkins, M. R. and Williams, K. L. ( 1997). Cross-species protein identification using amino acid composition, peptide mass fingerprinting, isoelectric point and molecular mass: a theoretical evaluation. Journal of Theoretical Biology 186, 715.CrossRefGoogle Scholar
Supplementary material: PDF

Ponton Supplementary Material

Appendix.pdf

Download Ponton Supplementary Material(PDF)
PDF 23.5 KB