Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T01:44:14.636Z Has data issue: false hasContentIssue false

Neuromuscular physiology of Hymenolepis diminuta and H. microstoma (Cestoda)

Published online by Cambridge University Press:  06 April 2009

C. S. Thompson
Affiliation:
Department of Zoology, University of Toronto, Toronto, Ontario, Canada M5S 1A1
D. F. Mettrick
Affiliation:
Department of Zoology, University of Toronto, Toronto, Ontario, Canada M5S 1A1

Summary

The physiology of the neuromuscular systems in Hymenolepis diminuta and H. microstoma was studied in vitro using intact, adult worm and strips of worm body wall. Intact worms were insensitive to ionic changes in the in vitro buffering system. However, strips of body wall containing longitudinal muscles were extremely sensitive to ionic manipulation. In intact worms tension generated in the strobila had two components; small brief tension peaks up to 500 mg amplitude are superimposed on larger, longer peaks of up to 1200 mg amplitude. Removal of the scolex and neck region either failed to show significant changes in tension, or showed a reduction in amplitude but not of frequency. Muscle contraction of both H. diminuta and H. microsoma were qualitatively similar. In split-worm preparations the concentration of Ca2+ in the bathing solution significantly affected both spontaneous and evoked contractions in H. diminuta and H. microstoma; the addition of CaCl2 greatly reduced the amplitude and frequency of the contractions. The chloride salts of cobalt, barium, cadmium and manganese elicited prolonged contractions of the longitudinal musculature of both H. diminuta and H. microstoma. While CoCl2 was the most effective in stimulating muscle contraction, the magnitude of the response varied with the concentration of Ca2+ in the bath. The results indicate that peripheral inhibition is extremely important in cestode motor control and that extracellular calcium ions may regulate the peripheral inhibitory mechanisms.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arai, H. P. (1980). Migratory activity and related phenomena in Hymenolepis diminuta. In Biology of the Tapeworm Hymenolepis diminuta, (ed. Arai, H. P.), pp. 615–37. New York: Academic Press.CrossRefGoogle Scholar
Bennett, J. L. (1982). Methods used to study the nervous system of small parasitic helminths. In Cues that Influence Behaviour of Internal Parasites, (ed. Bailey, W. S.), pp. 2234. New Orleans: U.S. Dept of Agriculture.Google Scholar
Cannon, C. E. & Mettrick, D. F. (1970). Changes in the distribution of Hymenolepis diminuta (Cestoda: Cyclophyllidea) within the rat intestine during prepatent development. Canadian Journal of Zoology 48, 761–9.CrossRefGoogle ScholarPubMed
Cyr, D., Gruner, S. & Mettrick, D. F. (1983). Hymenolepis diminuta: uptake of 5-hydroxytryptamine (serotonin), glucose, and changes in worm glycogen. Canadian Journal of Zoology 61, 1469–74.CrossRefGoogle Scholar
Dvorak, J. A., Jones, A. W. & Kuhlman, H. H. (1961). Studies on the biology of Hymenolepis microstoma (Dujardin, 1845). Journal of Parasitology 47, 833–8.CrossRefGoogle ScholarPubMed
Edwards, C. (1982). The selectivity of ion channels in nerve and muscle. Neuroscience 7, 1335–66.CrossRefGoogle ScholarPubMed
Keenan, L. & Koopowitz, H. (1981). Tetrodotoxin-sensitive action potentials from the brain of the polyclad flatworm, Notoplana acticola. The Journal of Experimental Zoology 215, 209–13.CrossRefGoogle Scholar
Lee, M. B., Bueding, E. & Schiller, E. L. (1978). The occurrence and distribution of 5-hydroxytryptamine in Hymenolepis diminuta and H. nana. Journal of Parasitology 64, 257–64.CrossRefGoogle ScholarPubMed
Litchford, R. G. (1963). Observations on Hymenolepis microstoma in three laboratory hosts: Mesocricetus amaratus, Mus musculua and Rattus norvegicus. Journal of Parasitology 49, 403–10.CrossRefGoogle Scholar
Lumsden, R. D. & Bryam, J. (1967). The ultrastructure of Cestode muscle. Journal of Parasitology 53, 326–42.CrossRefGoogle ScholarPubMed
Lumsden, R. D. & Specian, R. (1980). The morphology, histology and fine structure of the adult stage of the cyclophyllidean tapeworm Hymenolepis diminuta. In Biology of the Tapeworm Hymenolepis diminuta (ed. Arai, H. P.), pp. 157280. New York: Academic Press.CrossRefGoogle Scholar
Mettrick, D. F. (1971). Effect of host dietary constituents on intestinal pH and on the migrational behaviour of the rat tapeworm Hymenolepis diminuta. Canadian Journal of Zoology 49, 1513–25.CrossRefGoogle ScholarPubMed
Mettrick, D. F. (1982). Behavioural physiological cues of cestodes with particular reference to serotonin (5-HT). In Cues Which Influence Behaviour of Parasites (ed. Bailey, W. S.), pp. 85109. New Orleans: U.S. Department of Agriculture.Google Scholar
Moon, T. W., Mustapha, T., Hulbert, W. C., Podesta, R. B. & Mettrick, D. F. (1977). Phosphoenol-pyruvate branchpoint in adult Hymenolepis diminuta (Cestoda): A study of pyruvate kinase and phosphoenol—pyruvate carboxykinase. The Journal of Experimental Zoology 200, 325–36.CrossRefGoogle ScholarPubMed
Pax, R. A., Siefker, C., Hickox, T. & Bennet, J. L. (1981). Schistosoma mansoni: Neuro-transmitters, longitudinal musculature and effects of electrical stimulation. Experimental Parasitology 52, 346–55.CrossRefGoogle Scholar
Pritchard, R. K., Backmann, R., Hutchinson, G. W. & Kohler, P. (1982). The effect of Praziquantel on calcium in Hymenolepis diminuta. Molecular and Biochemical Parasitology 5, 297308.CrossRefGoogle Scholar
Prosser, C. L. (1973). Muscles. In Comparative Animal Physiology (ed. Prosser, C. L.), pp. 719780. Philadelphia, Pa: W. B. Saunders Co.Google Scholar
Rall, T. W. (1980). Central nervous system stimulants. The exanthines. In The Pharmacological Basis of Therapeutics (ed. Gilman, A. G., Goodman, L. S. and Gilman, A.), pp. 592607. New York: Macmillan Publishing Co.Google Scholar
Read, C. P. & Kilejian, A. Z. (1969). Circadian migratory behaviour of a cestode symbiote in the rat host. Journal of Parasitology 55, 574–8.CrossRefGoogle ScholarPubMed
Reitschel, P. E. (1935). Zur Bewegungsphysiologie der Cestoden. Zoologischer Anzeiger 111, 109–11.Google Scholar
Ribeiro, P. Z. & Webb, R. A. (1983). The synthesis of 5-hydroxytryptamine from tryptophan and 5-hydroxytryptophan in the cestode Hymenolepis diminuta. International Journal for Parasitology 13, 101–6.CrossRefGoogle ScholarPubMed
Ritchie, J. M. (1980). Tetrodoxin and saxitoxin, and the sodium channels of excitable tissue. Trends in Pharmacological Sciences 1, 275–9.CrossRefGoogle Scholar
Webb, R. A. (1977). Evidence for neurosecretory cells in the cestode Hymenolepis microstoma. Canadian Journal of Zoology 55, 1726–33.CrossRefGoogle ScholarPubMed
Wilson, V. C. L. C. & Schiller, E. L. (1969). The neuroanatomy of H. diminuta and H. nana. Journal of Parasitology 55, 161–70.CrossRefGoogle ScholarPubMed