Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T13:08:00.720Z Has data issue: false hasContentIssue false

A novel neutralization sensitive and subdominant RAP-1-related antigen (RRA) is expressed by Babesia bovis merozoites

Published online by Cambridge University Press:  18 April 2011

CARLOS E. SUAREZ*
Affiliation:
Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA 99164-7040 Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, USA 99164-6630
JACOB M. LAUGHERY
Affiliation:
Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA 99164-7040
REGINALDO G. BASTOS
Affiliation:
Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA 99164-7040
WENDELL C. JOHNSON
Affiliation:
Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, USA 99164-6630
JUNZO NORIMINE
Affiliation:
Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA 99164-7040
GUSTAVO ASENZO
Affiliation:
Instituto Nacional de Tecnología Agropecuaria, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Castelar, Argentina
WENDY C. BROWN
Affiliation:
Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA 99164-7040 School for Global Animal Health Washington State University, Pullman, WA, USA
MONICA FLORIN-CHRISTENSEN
Affiliation:
Instituto Nacional de Tecnología Agropecuaria, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Castelar, Argentina
WILL L. GOFF
Affiliation:
Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, USA 99164-6630
*
*Corresponding author: Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, USA 99164-6630. Tel: +509 335 6341. Fax +509 335 8328. E-mail: ces@vetmed.wsu.edu

Summary

Objective. The Babesia bovis genome encodes a rap-1 related gene denominated RAP-1 related antigen (RRA). In this study, we analysed the pattern of expression, immunogenicity and functional relevance of RRA. Methods. Phylogenetic analysis was performed using the program Phylip. Expression of rra was analysed by Northern blots, RT-PCR, immunoprecipitation, Western blots and immunofluorescence. RRA antigenicity was tested by T-cell proliferation and Western blot analysis, and functional relevance was determined in an in vitro neutralization assay. Results. RRA is more closely related to RAP-1b of Babesia bigemina than to B. bovis RAP-1, and it is highly conserved among distinct strains. Transcriptional analysis suggests lower numbers of rra transcripts compared to rap-1. Immunoprecipitation of metabolically labelled B. bovis proteins with antibodies against synthetic peptides representing predicted antigenic regions of RRA confirmed the expression of a ∼43 kDa RRA in cultured merozoites. Antibodies present in B. bovis hyperimmune sera, but not in field-infected cattle sera, reacted weakly with recombinant RRA, and no significant stimulation was obtained using recombinant RRA as antigen in T-cell proliferation assays, indicating that RRA is a subdominant antigen. Antibodies against RRA synthetic peptides reacted with merozoites using immunofluorescence, and were able to significantly inhibit erythrocyte invasion in in vitro neutralization tests, suggesting functional relevance for parasite survival. Conclusion. B. bovis express a novel subdominant RAP-1-like molecule that may contribute to erythrocyte invasion and/or egression by the parasite.

Type
Research Article
Creative Commons
This is a work of the United States Government and is not subject to copyright protection in the United States
Copyright
Copyright © Cambridge University Press 2011. This is a work of the United States Government and is not subject to copyright protection in the United States.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anziani, O. S., Guglielmone, A. A., Abdala, A. A., Aguirre, D. H. and Mangold, A. J. (1993). Proteccion conferida por Babesia bovis vacunal en novillos Holando Argentino. Revista de Medicina Veterinaria. (Buenos Aires) 74, 4749.Google Scholar
Bock, R., Jackson, L., de Vos, A. and Jorgensen, W. (2004). Babesiosis of cattle. Parasitology 129 (Suppl), S247S269. doi: 10.1017/S0031182004005190CrossRefGoogle ScholarPubMed
Boonchit, S., Xuan, X., Yokoyama, N., Goff, W. L., Waghela, S. D., Wagner, G. and Igarashi, I. (2004). Improved enzyme-linked immunosorbent assay using C-terminal truncated recombinant antigens of Babesia bovis rhoptry-associated protein-1 for detection of specific antibodies. Journal of Clinical Microbiology 42, 16011604. doi: 10.1128/JCM.42.4.1601–1604.2004CrossRefGoogle ScholarPubMed
Boonchit, S., Xua, X., Yokoyama, N., Goff, W. L., Wagner, G. and Igarashi, I. (2002). Evaluation of an enzyme-linked immunosorbent assay with recombinant rhoptry-associated protein 1 antigen against Babesia bovis for the detection of specific antibodies in cattle. Journal of Clinical Microbiology 40, 37713775. doi: 10.1128/JCM.40.10.3771–3775.2002.CrossRefGoogle ScholarPubMed
Brayton, K. A., Kappmeyer, L. S., Herndon, D. R., Dark, M. J., Tibbals, D. L., Palmer, G. H., McGuire, T. C. and Knowles, D. P. Jr. (2005). Complete genome sequencing of Anaplasma marginale reveals that the surface is skewed to two superfamilies of outer membrane proteins. Proceedings of the National Academy of Sciences, USA 18, 844849. doi: 10.1073/pnas.0406656102CrossRefGoogle Scholar
Brayton, K. A., Lau, A. O., Herndon, D. R., Hannick, L., Kappmeyer, L. S., Berens, S. J., Bidwell, S. L., Brown, W. C., Crabtree, J., Fadrosh, D., Feldblum, T., Forberger, H. A., Haas, B. J., Howell, J. M., Khouri, H., Koo, H., Mann, D. J., Norimine, J., Paulsen, I. T., Radune, D., Ren, Q., Smith, R. K. Jr, Suarez, C. E., White, O., Wortman, J. R., Knowles, D. P. Jr, McElwain, T. F. and Nene, V. M. (2007). Genome sequence of Babesia bovis and comparative analysis of apicomplexan hemoprotozoa. PLoS Pathogens 3, 14011413. doi:10.1371/journal.ppat.0030148CrossRefGoogle ScholarPubMed
Brown, W. C., Logan, K. S., Wagner, G. G. and Tetzlaff, C. L. (1991). Cell-mediated immune responses to Babesia bovis merozoite antigens in cattle following infection with tick-derived or cultured parasites. Infection and Immunity 59, 24182426.CrossRefGoogle ScholarPubMed
Brown, W. C., McElwain, T. F., Ruef, B. J., Suarez, C. E., Shkap, V., Chitko-Mckown, C. J., Tuo, W., Riece-Ficht, A. C. and Palmer, G. H. (1996). Babesia bovis: rhoptry-associated protein 1 is immunodominant for T helper cell epitopes conserved among geographically distant B. bovis strains. Infection and Immunity 64, 33413350.CrossRefGoogle Scholar
Brown, W. C., Norimine, J., Goff, W. L., Suarez, C. E. and McElwain, T. F. (2006). Prospects for recombinant vaccines against Babesia bovis and related parasites. Parasite Immunology 28, 315327. doi: 10.1111/j.1365-3024.2006.00849.xCrossRefGoogle ScholarPubMed
Brown, W. C. and Palmer, G. H. (1999). Designing blood-stage vaccines against Babesia bovis and B. bigemina. Parasitology Today 15, 275281.CrossRefGoogle ScholarPubMed
Brown, W. C., Zhao, S., Rice-Ficht, A. C., Logan, K. S. and Woods, V. M. (1992). Bovine helper T cell clones recognize five distinct epitopes on Babesia bovis merozoite antigens. Infection and Immunity 60, 43644372.CrossRefGoogle ScholarPubMed
Dalrymple, B. P., Casu, R. E., Peters, J. M., Dimmock, C. M., Gale, K. R., Boese, R. and Wright, I. G. (1993). Characterisation of a family of multi-copy genes encoding rhoptry protein homologues in Babesia bovis, Babesia ovis and Babesia canis. Molecular and Biochemical Parasitology 57, 181192.CrossRefGoogle ScholarPubMed
Dalrymple, B. P., Peters, J. M., Böse, R. and Wright, I. G. (1996). A polymerase chain reaction method for the identification of genes encoding members of the Bv60/p58 family of rhoptry protein homologues in the genus Babesia. Experimental Parasitology 84, 96100.CrossRefGoogle ScholarPubMed
de Waal, D. T. and Combrink, M. P. (2006). Live vaccines against bovine babesiosis. Veterinary Parasitology 138, 8896. doi:10.1016/j.vetpar.2006.01.042CrossRefGoogle ScholarPubMed
Gardner, M. J., Bishop, R., Shah, T., de Villiers, E. P., Carlton, J. M., Hall, N., Ren, Q., Paulsen, I. T., Pain, A., Berriman, M., Wilson, R. J., Sato, S., Ralph, S. A., Mann, D. J., Xiong, Z., Shallom, S. J., Weidman, J., Jiang, L., Lynn, J., Weaver, B., Shoaibi, A., Domingo, A. R., Wasawo, D., Crabtree, J., Wortman, J. R., Haas, B., Angiuoli, S. V., Creasy, T. H., Lu, C., Suh, B., Silva, J. C., Utterback, T. R., Feldblyum, T. V., Pertea, M., Allen, J., Nierman, W. C., Taracha, E. L., Salzberg, S. L., White, O. R., Fitzhugh, H. A., Morzaria, S., Venter, J. C., Fraser, C. M. and Nene, V. (2005). Genome sequence of Theileria parva, a bovine pathogen that transforms lymphocytes. Science 309, 134137. doi: 10.1126/science.1110439CrossRefGoogle ScholarPubMed
Goff, W. L., Davis, W. C., Palmer, G. H., McElwain, T. F., Johnson, W. C., Bailey, J. F. and McGuire, T. C. (1988). Identification of Babesia bovis merozoite surface antigens by using immune bovine sera and monoclonal antibodies. Infection and Immunity 56, 23632368.CrossRefGoogle ScholarPubMed
Goff, W. L., Molloy, J. B., Johnson, W. C., Suarez, C. E., Pino, I., Rhalem, A., Sahibi, H., Ceci, L., Carelli, G., Adams, D. S., McGuire, T. C., Knowles, D. P. and McElwain, T. F. (2006). Validation of a competitive enzyme-linked immunosorbent assay for detection of antibodies against Babesia bovis. Clinical and Vaccine Immunology 11, 12121216. doi: 10.1128/CVI.00196-06.CrossRefGoogle Scholar
Hines, S. A., McElwain, T. F., Buening, G. M. and Palmer, G. H. (1989). Molecular characterization of Babesia bovis merozoite surface proteins bearing epitopes immunodominant in protected cattle. Molecular and Biochemical Parasitology 37, 110.CrossRefGoogle ScholarPubMed
Hines, S. A., Palmer, G. H., Jasmer, D. P., Goff, W. L. and McElwain, T. F. (1995). Immunization of cattle with recombinant Babesia bovis merozoite surface antigen-1. Infection and Immunity 63, 349352.CrossRefGoogle ScholarPubMed
Johnson, W. C., Perryman, L. E. and Goff, W. L. (1997). Babesia bovis: identification of immunodominant merozoite surface proteins in soluble culture-derived exoantigen. Parasitology Research 83, 776780.CrossRefGoogle ScholarPubMed
Ikadai, H., Xuan, X., Igarashi, I., Tanaka, S., Kanemaru, T., Nagasawa, H., Fujisaki, K., Suzuki, N. and Mikami, T. (1999). Cloning and expression of a 48-kilodalton Babesia caballi merozoite rhoptry protein and potential use of the recombinant antigen in an enzyme-linked immunosorbent assay. Journal of Clinical Microbiology 37, 34753480.CrossRefGoogle ScholarPubMed
Kappmeyer, L. S., Perryman, L. E., Hines, S. A., Baszler, T. V., Katz, J. B., Hennager, S. G. and Knowles, D. P. (1999). Detection of equine antibodies to Babesia caballi by recombinant B. caballi rhoptry-associated protein 1 in a competitive-inhibition enzyme-linked immunosorbent assay. Journal of Clinical Microbiology 37, 22852290.CrossRefGoogle Scholar
Levy, M. G. and Ristic, M. (1980). Babesia bovis: continuous cultivation in a microaerophilous stationary phase culture. Science 207, 12181220.CrossRefGoogle Scholar
Mosqueda, J., McElwain, T. F., Stiller, D. and Palmer, G. H. (2002). Babesia bovis merozoite surface antigen 1 and rhoptry-associated protein 1 are expressed in sporozoites, and specific antibodies inhibit sporozoite attachment to erythrocytes. Infection and Immunity 70, 15991603. doi: 10.1128/IAI.70.3.1599-1603.2002.CrossRefGoogle ScholarPubMed
Norimine, J., Mosqueda, J., Suarez, C., Palmer, G. H., McElwain, T. F., Mbassa, G. and Brown, W. C. (2003). Stimulation of T-helper cell gamma interferon and immunoglobulin G responses specific for Babesia bovis rhoptry-associated protein 1 (RAP-1) or a RAP-1 protein lacking the carboxy-terminal repeat region is insufficient to provide protective immunity against virulent B. bovis challenge. Infection and Immunity 71, 50215032. doi: 10.1128/IAI.71.9.5021-5032.2003.CrossRefGoogle ScholarPubMed
Norimine, J., Suarez, C. E., McElwain, T. F., Florin-Christensen, M. and Brown, W. C. (2002). Immunodominant epitopes in Babesia bovis rhoptry-associated protein 1 that elicit memory CD4(+)-T-lymphocyte responses in B. bovis-immune individuals are located in the amino-terminal domain. Infection and Immunity 70, 20392048. doi: 10.1128/IAI.70.4.2039-2048.2002.CrossRefGoogle Scholar
Pain, A., Renauld, H., Berriman, M., Murphy, L., Yeats, C. A., Weir, W., Kerhornou, A., Aslett, M., Bishop, R., Bouchier, C., Cochet, M., Coulson, R. M., Cronin, A., de Villiers, E. P., Fraser, A., Fosker, N., Gardner, M., Goble, A., Griffiths-Jones, S., Harris, D. E., Katzer, F., Larke, N., Lord, A., Maser, P., McKellar, S., Mooney, P., Morton, F., Nene, V., O'Neil, S., Price, C., Quail, M. A., Rabbinowitsch, E., Rawlings, N. D., Rutter, S., Saunders, D., Seeger, K., Shah, T., Squares, R., Squares, S., Tivey, A., Walker, A. R., Woodward, J., Dobbelaere, D. A., Langsley, G., Rajandream, M. A., McKeever, D., Shiels, B., Tait, A., Barrell, B. and Hall, N. (2005). Genome of the host-cell transforming parasite Theileria annulata compared with T. parva. Science 309, 131133.CrossRefGoogle ScholarPubMed
Palmer, D. A., Buening, G. M. and Carson, C. A. (1982). Cryopreservation of Babesia bovis for in vitro cultivation. Parasitology 84, 567571. doi: 10.1126/science.1110418CrossRefGoogle ScholarPubMed
Rodriguez, S. D., Buening, G. M., Gree, T. J. and Carson, C. A. (1983). Cloning of Babesia bovis by in vitro cultivation. Infection and Immunity 42, 1518.CrossRefGoogle ScholarPubMed
Sam-Yellowe, T. Y. (1996). Rhoptry organelles of the apicomplexa: Their role in host cell invasion and intracellular survival. Parasitology Today 12, 308316. doi:10.1016/0169-4758(96)10030-2CrossRefGoogle ScholarPubMed
Skuce, P. J., Mallon, T. R. and Taylor, S. B. (1996). Molecular cloning of a putative rhoptry protein homologue from Babesia divergens. Molecular and Biochemical Parasitology 77, 99102. doi:10.1016/0166-6851(96)02570-4CrossRefGoogle ScholarPubMed
Suarez, C. E., Florin-Christensen, M., Hines, S. A., Palmer, G. H., Brown, W. C. and McElwain, T. F. (2000). Characterization of allelic variation in the Babesia bovis merozoite surface antigen 1 (MSA-1) locus and identification of a cross-reactive inhibition-sensitive MSA-1 epitope. Infection and Immunity 68, 68656870.CrossRefGoogle ScholarPubMed
Suarez, C. E., McElwain, T. F., Stephens, E. B., Mishra, V. S. and Palmer, G. H. (1991 b). Sequence conservation among merozoite apical complex proteins of Babesia bovis, Babesia bigemina and other apicomplexa. Molecular and Biochemical Parasitology 49, 329332.CrossRefGoogle ScholarPubMed
Suarez, C. E., Palmer, G. H., Florin-Christensen, M., Hines, S. A., Hötzel, I. and McElwain, T. F. (2003). Organization, transcription, and expression of rhoptry associated protein genes in the Babesia bigemina rap-1 locus. Molecular and Biochemical Parasitology 127, 101112. doi:10.1016/S0166-6851(02)00311-0CrossRefGoogle ScholarPubMed
Suarez, C. E., Palmer, G. H., Hötzel, I. and McElwain, T. F. (1998). Structure, sequence, and transcriptional analysis of the Babesia bovis rap-1 multigene locus. Molecular and Biochemical Parasitology 93, 215222. doi:10.1016/S0166-6851(98)00032-2Google ScholarPubMed
Suarez, C. E., Palmer, G. H., Jasmer, D. P., Hines, S. A., Perryman, L. E. and McElwain, T. F. (1991 a). Characterization of the gene encoding a 60-kilodalton Babesia bovis merozoite protein with conserved and surface exposed epitopes. Molecular and Biochemical Parasitology 46, 4552.CrossRefGoogle ScholarPubMed
Suarez, C. E., Thompson, S. M., McElwain, T. F., Hines, S. A. and Palmer, G. H. (1994). Conservation of oligopeptide motifs in rhoptry proteins from different genera of erythroparasitic protozoa. Experimental Parasitology 78, 246251.CrossRefGoogle ScholarPubMed
Wright, I. G., Casu, R., Commins, M. A., Dalrymple, B. P., Gale, K. R., Goodger, B. V., Riddles, P. W., Waltisbuhl, D. J., Abetz, I., Berrie, D. A., Bowles, Y., Dimmock, C., Hayes, T., Kalnins, H., Leatch, G., McGrae, R., Montague, P. E., Nisbet, I. T., Parrodi, F., Peters, J. M., Scheiwe, P. C., Smith, W., Rode-Bramanis, K. and White, M. A. (1992). The development of a recombinant Babesia vaccine. Veterinary Parasitology 44, 313.CrossRefGoogle ScholarPubMed
Yokoyama, N., Suthisak, B., Hirata, H., Matsuo, T., Inoue, N., Sugimoto, C. and Igarashi, I. (2002). Cellular localization of Babesia bovis merozoite rhoptry-associated protein 1 and its erythrocyte-binding activity. Infection and Immunity 70, 58225826. doi: 10.1128/IAI.70.10.5822-5826.2002.CrossRefGoogle ScholarPubMed
Zhou, J., Jia, H., Nishikawa, Y., Fujisaki, K. and Xuan, X. (2007). Babesia gibsoni rhoptry-associated protein 1 and its potential use as a diagnostic antigen. Veterinary Parasitology 145, 1620. doi:10.1016/j.vetpar.2006.10.022CrossRefGoogle ScholarPubMed