Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T08:13:49.941Z Has data issue: false hasContentIssue false

Prevalence of Leucocytozoon spp, in the endangered yellow-eyed penguin Megadyptes antipodes

Published online by Cambridge University Press:  17 June 2010

A. G. HILL
Affiliation:
New Zealand Wildlife Health Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
L. HOWE
Affiliation:
New Zealand Wildlife Health Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
B. D. GARTRELL*
Affiliation:
New Zealand Wildlife Health Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
M. R. ALLEY
Affiliation:
New Zealand Wildlife Health Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
*
*Corresponding author: New Zealand Wildlife Health Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand. Tel: 011 64 6 350 5799 356 9099. Fax: 011 64 6 350 5654. E-mail: B.Gartrell@massey.ac.nz

Summary

Yellow-eyed penguins on Stewart Island were identified with a Leucocytozoon spp. of a novel lineage in association with a high regional incidence of chick mortality (n=32, 100% mortality) during the November 2006 to January 2007 breeding season. Fourteen chicks from Stewart Island were examined post-mortem and histologically for Leucocytozoon infection. In addition, a survey of blood to detect Leucocytozoon spp. infections using PCR was performed on 107 yellow-eyed penguins from 4 distinct nesting areas on the South Island (Oamaru, Otago Peninsula, and Catlins) (n=95), and Stewart Island (n=12). The results of the study revealed that 2 of the 14 (14%) chicks necropsied showed severe, disseminated megaloschizont formation in the liver, spleen, lung, kidney and other tissues characteristic of leucocytozoonosis. Eighty-three percent (83%) of blood samples collected from Stewart Island penguins contained Leucocytozoon DNA, whereas samples from the 3 other nesting areas were negative for the blood parasite. Leucocytozoon spp. DNA sequences isolated from blood and tissues of adults (n=10) and chicks (n=7) were similar and grouped with other published Leucocytozoon spp. sequences but in a distinct cluster together with closely related isolates from a Western march harrier (Circus aerginosus) and common loon (Gavia immer). These findings suggest that yellow-eyed penguins on Stewart Island are infected with a regionally isolated, host-specific Leucocytozoon spp. which may contribute to the high chick mortality observed during this period.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alley, M. R. (2005). Leucocytozoonosis in yellow-eyed penguins, Megadyptes antipodes. Kokako 12, 3132.Google Scholar
Alley, M. R., Morgan, K. J., Gill, J. M. and Hocken, A. G. (2004). Diseases and causes of mortality in yellow-eyed penguins, Megadyptes antipodes. Kokako 11, 1823.Google Scholar
Allison, F. R., Desser, S. S. and Whitten, L. K. (1978). Further observations on the life cycle and vectors of the haemosporidian Leucocytozoon tawaki and its transmission to the Fiordland crested penguin. New Zealand Journal of Zoology 5, 371374.CrossRefGoogle Scholar
Atkinson, C. T. and IIIVan Riper, C. (1991). Pathogenicity and epizootiology of avian haematozoa: Plasmodium, Leucocytozoon, and Haemoproteus. In Bird-Parasite Interactions (ed. Loye, J. E. and Zuk, M.),pp. 1948. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Beyer, W. H. (2005). Appendix VII, values of exact 95% confidence limits for proportions. In Veterinary Epidemiology (ed. Thrusfield, M.),pp. 422425. Blackwell Publishing, Oxford, UK.Google Scholar
Blas, I., Ortega, C., Frankena, K. and Noordhuizen, J. (2000). Win Episcope 2.0. B. Delphi, EPIDECON: Software for Quantitative Veterinary Epidemiology.Google Scholar
Brossy, J.-J., Plos, A. L., Blackbeard, J. M. and Kline, A. (1999). Diseases acquired by captive penguins: What happens when they are released into the wild? Marine Ornithology 27, 185186.Google Scholar
Cameron, A. R. (2001). FreeCalc Software Version 2.Google Scholar
Cranfield, M. R., Graczyk, T. K., Beall, F. B., Ialeggio, D. M., Shaw, M. L. and Skjoldager, M. L. (1994). Subclinical avian malaria infections in African black-footed penguins (Spheniscus demersus) and induction of parasite recrudescence. Journal of Wildlife Diseases 30, 372376.CrossRefGoogle ScholarPubMed
Darby, J. T. (2003). The yellow-eyed penguin (Megadytes antipodes) on Stewart and Codfish Islands. Notornis 50, 148154.Google Scholar
Darby, J. T. and Seddon, P. J. (1990). Breeding biology of the yellow-eyed penguin (Megadyptes antipodes). In Penguin Biology (ed. Davis, L. S. and Darby, J. T.), pp. 4562. Academic Press, Orlando, FL, USA.Google Scholar
Deitemeyer, K. (2005). Immunological stress: the physiological cost of the immune response. In Intuitive Immunology (ed. Deitemeyer, K.), pp. 1013. Croft Printing Ltd, Christchurch, New Zealand.Google Scholar
Department of Conservation (1991). Yellow-eyed penguin, Megadyptes antipodes. Species Conservation Strategy, Department of Conservation, Dunedin, New Zealand.Google Scholar
Desser, S. S. (1967). Schizogony and gametogony of Leucocytozoon simondi and associated reactions in the avian host. Journal of Protozoology 14, 244254.CrossRefGoogle ScholarPubMed
Duignan, P. J. (2001). Diseases of penguins. Surveillance 28, 5–11.Google Scholar
Dunbar, M. R., Torniquist, S. and Giordano, M. R. (2003). Blood parasites in sage-grouse from Nevada and Oregon. Journal of Wildlife Diseases 39, 203208.CrossRefGoogle ScholarPubMed
Earle, R. A., Huchzermeyer, F. W., Bennet, G. F. and Brossy, J-J. (1993). Babesia peircei sp. nov. from the jackass penguin. South African Journal of Zoology 28, 8890.CrossRefGoogle Scholar
Evans, M. and Otter, A. (1998). Fatal combined infection with Haemoproteus noctuae and Leucocytozoon ziemanni in juvenile snowy owls (Nyctea scandiaca). Veterinary Record 143, 7276.CrossRefGoogle ScholarPubMed
Fallis, A. M. and Desser, S. S. (1977). On species of Leucocytozoon, Haemoproteus, and Hepatcystis. In Parasitic Protozoa (ed. Kreier, J. P.), pp. 239266. Academic Press. New York, USA.Google Scholar
Fallis, A. M., Bisset, S. A. and Allison, F. R. (1976). Leucocytozoon tawaki n.sp. (Eucoccidia: Leucocytozoidae) from the penguin Eudyptes pachyrhynchus, and preliminary observations on its development in Austrosimulium spp. (Diptera: Simuliidae). New Zealand Journal of Zoology 3, 1116.CrossRefGoogle Scholar
Fallis, A. M., Desser, S. S. and Khan, R. A. (1974). On species of Leucocytozoon. In Advances in Parasitology (ed. Dawes, B.), 12, 167. Academic Press. New York, USA.Google Scholar
Galvani, A. P. (2003). Epidemiology meets evolutionary ecology. Trends in Ecology & Evolution 18, 132139.CrossRefGoogle Scholar
Graczyk, T. K., Cockrem, J. F., Cranfield, M. R., Darby, J. T. and Moore, P. (1995 a). Avian malaria seroprevalence in wild New Zealand penguins. Parasite-Journal de la Societe Francaise de Parasitologie 2, 401405.Google Scholar
Graczyk, T. K., Cranfield, M. R., Brossy, J. J., Cockrem, J. F., Jouventin, P. and Seddon, P. J. (1995 b). Detection of avian malaria infections in wild and captive penguins. Journal of the Helminthological Society of Washington 62, 135141.Google Scholar
Hellgren, O., Waldenstrom, J. and Bensch, S. (2004). A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. Journal of Parasitology 90, 797802.CrossRefGoogle ScholarPubMed
Hellgren, O., Waldenstrom, J., Perez-Tris, J., Szollosi, E., Hasselquist, D., Krizanauskiene, A., Ottosson, U. and Bensch, S. (2007). Detecting shifts of transmission areas in avian blood parasites – a phylogenetic approach. Molecular Ecology 16, 12811290.CrossRefGoogle ScholarPubMed
Herman, C. M., Barrow, J. H. Jr. and Tarshis, I. B. (1975). Leucocytozoonosis in Canada geese at the Seney National Wildlife Refuge. Journal of Wildlife Diseases 11, 404411.CrossRefGoogle ScholarPubMed
Higgins, D., Thompson, J., Gibson, T., Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994). ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties, and weight matrix choice. Nucleic Acids Research 22, 46734680.Google Scholar
Jarvi, S. I., Schultz, J. J. and Atkinson, C. T. (2002). PCR diagnostics underestimate the prevalence of avian malaria (Plasmodium relictum) in experimentally-infected passerines. Journal of Parasitology 88, 153158.CrossRefGoogle ScholarPubMed
Khan, R. A. and Fallis, A. M. (1970). Relapses in birds infected with species of Leucocytozoon. Canadian Journal of Zoology 48, 451455.CrossRefGoogle ScholarPubMed
King, S. (2007). Breeding success of yellow-eyed penguins on Stewart Island and off-shore islands 2003–2008. Yellow-eyed Penguin Trust, Dunedin, New Zealand.Google Scholar
Massaro, M. and Blair, D. (2003). Comparison of population numbers of yellow-eyed penguins, Megadyptes antipodes, on Stewart Island and on adjacent cat-free islands. New Zealand Journal of Ecology 27, 107113.Google Scholar
McKinley, B. (2001). Hoiho (Megadyptes antipodes) recovery plan 2000–2025. Department of Conservation, Wellington, New Zealand.Google Scholar
Merino, S., Moreno, J., Sanz, J. J. and Arriero, E. (2000). Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proceedings of the Royal Society of London, B 267, 25072510.CrossRefGoogle Scholar
Moore, P. J., Murray, E. D., Mills, J. A., McKinlay, B., Nelson, D. and Murphy, B. (1991). Results of pilot study (1990–91): Marine-based activities of yellow-eyed penguin. In Yellow-eyed Penguin Research and Monitoring Studies 1990–1991 (ed. Moore, P. J.),p. 29. Department of Conservation, Wellington, New Zealand.Google Scholar
Morii, T. (1992). A review of Leucocytozoon caulleryi infection in chickens. Journal of Protozoology Research 2, 128133.Google Scholar
Peirce, M. A., Greenwood, A. G. and Stidworthy, M. F. (2005). Leucocytozoon in captive penguins. The Veterinary Record 157, 819820.CrossRefGoogle ScholarPubMed
Rae, M. A. (2006). Diagnostic value of necropsy. In Clinical Avian Medicine (ed. Harrison, G. J. and Lightfoot, T. L.),pp. 661678. Spix Publishing, Palm Beach, FL, USA.Google Scholar
Richard, F. A., Sehgal, R. N. M., Jones, H. I. and Smith, T. B. (2002). A comparative analysis of PCR-based detection methods for avian malaria. Journal of Parasitology 88, 819822.CrossRefGoogle ScholarPubMed
Siccardi, F. J., Rutherford, H. O. and Derieux, W. T. (1974). Pathology and prevention of Leucocytozoon smithi infection in turkeys. Avian Diseases 18, 2132.CrossRefGoogle ScholarPubMed
Sturrock, H. J. W. and Tompkins, D. M. (2007). Avian malaria (Plasmodium spp) in yellow-eyed penguins: Investigating the cause of high seroprevalence but low observed infection. New Zealand Veterinary Journal 55, 158160.CrossRefGoogle ScholarPubMed
Swinnerton, K. J., Pierce, M. A., Greenwood, A., Chapman, R. E. and Jones, C. G. (2005). Prevalence of Leucocytozoon marchouxi in the endangered pink pigeon Columba mayeri. Ibis 147, 725737.CrossRefGoogle Scholar
Swofford, D. L. (2002). PAUP*: Phylogenetic Analysis using Parsimony (and other Methods) 4.0 Beta, Version 10. Sinauer, Sunderland, MA, USA.Google Scholar
Triggs, S. J. and Darby, J. T. (1989). Genetics and Conservation of Yellow-eyed Penguin: an Interim Report. Science and Research Internal report No. 43. Department of Conservation, Wellington, New Zealand.Google Scholar
Van Heezik, Y. (1990). Seasonal, geographical, and age-related variations in the diet of the yellow-eyed penguin (Megadyptes antipodes). New Zealand Journal of Zoology 17, 201212.CrossRefGoogle Scholar