Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T13:18:56.214Z Has data issue: false hasContentIssue false

A spectrum of disease in Human African trypanosomiasis: the host and parasite genetics of virulence

Published online by Cambridge University Press:  21 July 2010

JEREMY M. STERNBERG*
Affiliation:
Institute of Biological and Environmental Sciences, University of Aberdeen, Zoology Building, Aberdeen AB24 2TZ, UK
LORNA MACLEAN
Affiliation:
Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, YO10 5YW, UK
*
*Corresponding Author: Jeremy M Sternberg, IBES, University of Aberdeen, Zoology Building, Aberdeen AB24 2TZ. Tel: +44 1224 272272. E-mail: j.sternberg@abdn.ac.uk

Summary

For over 50 years it has been known that there are considerable differences in the severity and rate of progression of both Trypanosoma brucei rhodesiense and T. b. gambiense infection between individuals. Yet research into the factors, whether parasite or host, which control virulence in Human African trypanosomiasis is in its infancy. In this paper we review the clinical evidence for virulence variation and the epidemiological and experimental data that give clues as to the mechanisms involved. Evidence will be presented for both asymptomatic forms of T. b. gambiense infection and low virulence forms of T. b. rhodesiense infection in humans. While in both cases the mechanisms remain to be elucidated, the overall infection virulence phenotype is determined by both parasite and host genotype.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antoine-Moussiaux, N., Magez, S. and Desmecht, D. (2008). Contributions of experimental mouse models to the understanding of African trypanosomiasis. Trends in Parasitology 24, 411418.CrossRefGoogle Scholar
Apted, F. I., Smyly, D. P., Ormerod, W. E. and Stronach, B. W. (1963). A comparative study of the epidemiology of endemic Rhodesian sleeping sickness in different parts of Africa. Journal of Tropical Medicine and Hygiene 66, 116.Google ScholarPubMed
Balmer, O., Stearns, S. C., Schotzau, A. and Brun, R. (2009). Intraspecific competition between co-infecting parasite strains enhances host survival in African trypanosomes. Ecology 90, 33673378.CrossRefGoogle ScholarPubMed
Bosschaerts, T., Guilliams, M., Noel, W., Herin, M., Burk, R. F., Hill, K. E., Brys, L., Raes, G., Ghassabeh, G. H., De Baetselier, P. and Beschin, A. (2008). Alternatively activated myeloid cells limit pathogenicity associated with African trypanosomiasis through the IL-10 inducible gene selenoprotein P. Journal of Immunology 180, 61686175.CrossRefGoogle ScholarPubMed
Brookes, A. J. (1999). The essence of SNPs. Gene 234, 177186.CrossRefGoogle ScholarPubMed
Buyst, H. (1974). Epidemiology, clinical features, treatment and history of sleeping sickness on Northern Edge of Luangwa-Flybelt. Medical Journal of Zambia 8, 212.Google Scholar
Buyst, H. (1977). The epidemiology of sleeping sickness in the historical Luangwa valley. Annales de la Societé belge de médicine tropicale 57, 349359.Google ScholarPubMed
Caljon, G., Van Den Abbeele, J., Stijlemans, B., Coosemans, M., De Baetselier, P. and Magez, S. (2006). Tsetse fly saliva accelerates the onset of Trypanosoma brucei infection in a mouse model associated with a reduced host inflammatory response. Infection and Immunity 74, 63246330.CrossRefGoogle Scholar
Checchi, F., Filipe, J. A., Barrett, M. P. and Chandramohan, D. (2008). The natural progression of Gambiense sleeping sickness: what is the evidence? PLoS Neglected Tropical Diseases 2, e303.CrossRefGoogle ScholarPubMed
Clayton, C. E. (1978). Trypanosoma brucei: influence of host strain and parasite antigenic type on infections in mice. Experimental Parasitology 44, 202208.CrossRefGoogle ScholarPubMed
Collins, F. S., Brooks, L. D. and Chakravarti, A. (1998). A DNA polymorphism discovery resource for research on human genetic variation. Genome Research 8, 12291231.CrossRefGoogle ScholarPubMed
Courtin, D., Argiro, L., Jamonneau, V., N'dri, L., N'guessan, P., Abel, L., Dessein, A., Cot, M., Laveissiere, C. and Garcia, A. (2006). Interest of tumor necrosis factor-alpha-308 G/A and interleukin-10-592 C/A polymorphisms in human African trypanosomiasis. Infection, Genetics and Evolution 6, 123129.CrossRefGoogle Scholar
Courtin, D., Milet, J., Jamonneau, V., Yeminanga, C. S., Kumeso, V. K., Bilengue, C. M., Betard, C. and Garcia, A. (2007). Association between human African trypanosomiasis and the IL6 gene in a Congolese population. Infection, Genetics and Evolution 7, 6068.CrossRefGoogle Scholar
De Gee, A. L., Levine, R. F. and Mansfield, J. M. (1988). Genetics of resistance to the African trypanosomes. VI. Heredity of resistance and variable surface glycoprotein-specific immune responses. Journal of Immunology 140, 283288.CrossRefGoogle Scholar
Diffley, P., Scott, J. O., Mama, K. and Tsen, T. N. (1987). The rate of proliferation among African trypanosomes is a stable trait that is directly related to virulence. American Journal of Tropical Medicine and Hygiene 36, 533540.CrossRefGoogle ScholarPubMed
Duggan, A. J. and Hutchinson, M. P. (1966). Sleeping sickness in Europeans: a review of 109 cases. Journal of Tropical Medicine and Hygiene 69, 124131.Google ScholarPubMed
Ebert, D. (1998). Experimental evolution of parasites. Science 282, 14321435.CrossRefGoogle ScholarPubMed
Fairbairn, H. and Godfrey, D. G. (1957). The local reaction in man at the site of infection with Trypanosoma rhodesiense. Annals of Tropical Medicine and Parasitology 51, 464470.CrossRefGoogle Scholar
Foulkes, J. R. (1981). The six diseases WHO. Human trypanosomiasis in Africa. British Medical Journal (Clinical Research edition) 283, 11721174.CrossRefGoogle ScholarPubMed
Garcia, A., Jamonneau, V., Magnus, E., Laveissiere, C., Lejon, V., N'guessan, P., N'dri, L., Van Meirvenne, N. and Buscher, P. (2000). Follow-up of Card Agglutination Trypanosomiasis Test (CATT) positive but apparently aparasitaemic individuals in Cote d'Ivoire: evidence for a complex and heterogeneous population. Tropical Medicine and International Health 5, 786793.CrossRefGoogle ScholarPubMed
Garcia, A., Jamonneau, V., Sane, B., Fournet, F., N'guessan, P., N'dri, L., Sanon, R., Kaba, D. and Laveissiere, C. (2002). Host age and time of exposure in Trypanosoma brucei gambiense Human African Trypanosomiasis. Tropical Medicine and International Health 7, 429434.CrossRefGoogle ScholarPubMed
Gibson, W. (2002). Will the real Trypanosoma brucei please step forward? Trends in Parasitology 18, 486490.CrossRefGoogle ScholarPubMed
Graf, H. (1929). Report on four cases of trypanosomiaisis occuring in Europeans of the British Cameroons. Transactions of the Royal Society of Tropical Medicine and Hygiene 23, 95100.CrossRefGoogle Scholar
Greenblatt, H. C., Diggs, C. L. and Rosenstreich, D. L. (1984). Trypanosoma rhodesiense: analysis of the genetic control of resistance among mice. Infection and Immunity 44, 107111.CrossRefGoogle ScholarPubMed
Guilliams, M., Bosschaerts, T., Herin, M., Hunig, T., Loi, P., Flamand, V., De Baetselier, P. and Beschin, A. (2008). Experimental expansion of the regulatory T cell population increases resistance to African trypanosomiasis. Journal of Infectious Diseases 198, 781791.CrossRefGoogle ScholarPubMed
Hoare, C. A. (1972). The Trypanosomes of Mammals: A Zoological Monograph, Blackwell Scientific Publications, Oxford.Google Scholar
Holzmuller, P., Biron, D. G., Courtois, P., Koffi, M., Bras-Goncalves, R., Daulouede, S., Solano, P., Cuny, G., Vincendeau, P. and Jamonneau, V. (2008 a). Virulence and pathogenicity patterns of Trypanosoma brucei gambiense field isolates in experimentally infected mouse: differences in host immune response modulation by secretome and proteomics. Microbes and Infection 10, 7986.CrossRefGoogle ScholarPubMed
Holzmuller, P., Grebaut, P., Peltier, J. B., Brizard, J. P., Perrone, T., Gonzatti, M., Bengaly, Z., Rossignol, M., Aso, P. M., Vincendeau, P., Cuny, G., Boulange, A. and Frutos, R. (2008 b). Secretome of animal trypanosomes. Annals of the New York Academy of Sciences 1149, 337342.CrossRefGoogle ScholarPubMed
Hutchinson, M. P. (1971). Human trypanosomiasis in South-West Ethiopia (March 1967–March 1970). Ethiopian Medical Journal 9, 369.Google ScholarPubMed
Inoue, N., Narumi, D., Mbati, P. A., Hirumi, K., Situakibanza, N. T. H. and Hirumi, H. (1998). Susceptibility of severe combined immuno-deficient (SCID) mice to Trypanosoma brucei gambiense and T.b. rhodesiense. Tropical Medicine and International Health 3, 408412.CrossRefGoogle ScholarPubMed
Inverso, J. A., De Gee, A. L. and Mansfield, J. M. (1988). Genetics of resistance to the African trypanosomes. VII. Trypanosome virulence is not linked to variable surface glycoprotein expression. Journal of Immunology 140, 289293.CrossRefGoogle Scholar
Iraqi, F., Clapcott, S. J., Kumari, P., Haley, C. S., Kemp, S. J. and Teale, A. J. (2000). Fine mapping of trypanosomiasis resistance loci in murine advanced intercross lines. Mammalian Genome 11, 645648.CrossRefGoogle ScholarPubMed
Iraqi, F., Sekikawa, K., Rowlands, J. and Teale, A. (2001). Susceptibility of tumour necrosis factor-alpha genetically deficient mice to Trypanosoma congolense infection. Parasite Immunology 23, 445451.CrossRefGoogle ScholarPubMed
Jamonneau, V., Ravel, S., Garcia, A., Koffi, M., Truc, P., Laveissiere, C., Herder, S., Grebaut, P., Cuny, G. and Solano, P. (2004). Characterization of Trypanosoma brucei s.l. infecting asymptomatic sleeping-sickness patients in Cote d'Ivoire: a new genetic group? Annals of Tropical Medicine and Parasitology 98, 329337.CrossRefGoogle ScholarPubMed
Jenni, L., Marti, J., Schweizer, J., Betschart, B., Le Page, R. W. F., Wells, J. M., Tait, A., Paindavoine, P., Pays, E. and Steinert, M. (1986). Hybrid formation between African trypanosomes during cyclical transmission. Nature 322, 173175.CrossRefGoogle ScholarPubMed
Kaushik, R. S., Uzonna, J. E., Zhang, Y., Gordon, J. R. and Tabel, H. (2000). Innate resistance to experimental African trypanosomiasis: differences in cytokine (TNF-alpha, IL-6, IL-10 and IL-12) production by bone marrow-derived macrophages from resistant and susceptible mice. Cytokine 12, 10241034.CrossRefGoogle ScholarPubMed
Kemp, S. J., Iraqi, F., Darvasi, A., Soller, M. and Teale, A. J. (1997). Localization of genes controlling resistance to trypanosomiasis in mice. Nature Genetics 16, 194196.CrossRefGoogle ScholarPubMed
Kemp, S. J. and Teale, A. J. (1998). Genetic basis of trypanotolerance in cattle and mice. Parasitology Today 14, 450454.CrossRefGoogle ScholarPubMed
Kennedy, P. G. E. (2004). Human African Trypanosomiasis of the CNS: current issues and challenges. Journal of Clinical Investigation 113, 496504.CrossRefGoogle ScholarPubMed
Komba, E. K., Kibona, S. N., Ambwene, A. K., Stevens, J. R. and Gibson, W. C. (1997). Genetic diversity among Trypanosoma brucei rhodesiense isolates from Tanzania. Parasitology 115, 571579.CrossRefGoogle ScholarPubMed
Lapeyssonnie, L. (1960). Second note on an exceptional case of trypanosomiasis. Blood parasites seen for 21 years without appreciable clinical signs in a woman treated unsuccessfully during the first 10 years. Bulletin de la Société de Pathologie Exotique 53, 2832.Google Scholar
Lejon, V., Lardon, J., Kenis, G., Pinoges, L., Legros, D., Bisser, S., N'siesi, X., Bosmans, E. and Buscher, P. (2002). Interleukin (IL)-6, IL-8 and IL-10 in serum and CSF of Trypanosoma brucei gambiense sleeping sickness patients before and after treatment. Transactions of the Royal Society of Tropical Medicine and Hygiene 96, 329333.CrossRefGoogle ScholarPubMed
Maclean, L., Chisi, J. E., Odiit, M., Gibson, W. C., Ferris, V., Picozzi, K. and Sternberg, J. M. (2004). Severity of Human African Trypanosomiasis in East Africa is associated with geographic location, parasite genotype and host-inflammatory cytokine response profile. Infection and Immunity 72, 70407044.CrossRefGoogle ScholarPubMed
Maclean, L., Odiit, M., Macleod, A., Morrison, L., Sweeney, L., Cooper, A., Kennedy, P. G. E. and Sternberg, J. M. (2007). Spatially and genetically distinct African trypanosome virulence variants defined by host interferon-gamma response. Journal of Infectious Diseases 196, 16201628.CrossRefGoogle ScholarPubMed
Maclean, L., Odiit, M. and Sternberg, J. M. (2006). Intrathecal cytokine responses in Trypanosoma brucei rhodesiense sleeping sickness patients. Transactions of the Royal Society of Tropical Medicine and Hygiene 100, 270275.CrossRefGoogle ScholarPubMed
Macleod, A., Tait, A. and Turner, C. M. (2001). The population genetics of Trypanosoma brucei and the origin of human infectivity. Philososophical Transactions of the Royal Society London B Biological Sciences 356, 10351044.CrossRefGoogle ScholarPubMed
Macleod, A., Tweedie, A., Mclellan, S., Taylor, S., Hall, N., Berriman, M., El-Sayed, N. M., Hope, M., Turner, C. M. and Tait, A. (2005). The genetic map and comparative analysis with the physical map of Trypanosoma brucei. Nucleic Acids Research 33, 66886693.CrossRefGoogle ScholarPubMed
Magez, S., Lucas, R., Darji, A., Songa, E. B., Hamers, R. and De Baetselier, P. (1993). Murine tumour necrosis factor plays a protective role during the initial phase of the experimental infection with Trypanosoma brucei brucei. Parasite Immunology 15, 635641.CrossRefGoogle Scholar
Magez, S., Radwanska, M., Beschin, A., Sekikawa, K. and De Baetselier, P. (1999). Tumor necrosis factor alpha is a key mediator in the regulation of experimental Trypanosoma brucei infections. Infection and Immunity 67, 31283132.CrossRefGoogle ScholarPubMed
Magez, S., Radwanska, M., Drennan, M., Fick, L., Baral, T. N., Allie, N., Jacobs, M., Nedospasov, S., Brombacher, F., Ryffel, B. and De Baetselier, P. (2007). Tumor necrosis factor (TNF) receptor-1 (TNFp55) signal transduction and macrophage-derived soluble TNF are crucial for nitric oxide-mediated Trypanosoma congolense parasite killing. Journal of Infectious Diseases 196, 954962.CrossRefGoogle ScholarPubMed
Magez, S., Stijlemans, B., Baral, T. and De Baetselier, P. (2002). VSG-GPI anchors of African trypanosomes: their role in macrophage activation and induction of infection-associated immunopathology. Microbes and Infection 4, 9991006.CrossRefGoogle ScholarPubMed
Magez, S., Truyens, C., Merimi, M., Radwanska, M., Stijlemans, B., Brouckaert, P., Brombacher, F., Pays, E. and De Baetselier, P. (2004). P75 tumor necrosis factor-receptor shedding occurs as a protective host response during African trypanosomiasis. Journal of Infectious Diseases 189, 527539.CrossRefGoogle ScholarPubMed
Masocha, W., Robertson, B., Rottenberg, M. E., Mhlanga, J., Sorokin, L. and Kristensson, K. (2004). Cerebral vessel laminins and IFN-gamma define Trypanosoma brucei brucei penetration of the blood-brain barrier. Journal of Clinical Investigation 114, 689694.CrossRefGoogle ScholarPubMed
Masumu, J., Marcotty, T., Geerts, S., Vercruysse, J. and Van Den Bossche, P. (2009). Cross-protection between Trypanosoma congolense strains of low and high virulence. Veterinary Parasitology 163, 127131.CrossRefGoogle ScholarPubMed
Masumu, J., Marcotty, T., Geysen, D., Geerts, S., Vercruysse, J., Dorny, P. and Den Bossche, P. V. (2006). Comparison of the virulence of Trypanosoma congolense strains isolated from cattle in a trypanosomiasis endemic area of eastern Zambia. International Journal for Parasitology 36, 497501.CrossRefGoogle Scholar
Morrison, L. J., Mclellan, S., Sweeney, L., Chan, C. N., Macleod, A., Tait, A. and Turner, C. M. (2010). Role for parasite genetic diversity in differential host responses to Trypanosoma brucei infection. Infection and Immunity 78, 10961108.CrossRefGoogle ScholarPubMed
Morrison, L. J., Tait, A., Mclellan, S., Sweeney, L., Turner, C. M. and Macleod, A. (2009). A major genetic locus in Trypanosoma brucei is a determinant of host pathology. PLoS Neglected Tropical Diseases 3, e557.CrossRefGoogle Scholar
Morrison, W. I. and Murray, M. (1979). Trypanosoma congolense: inheritance of susceptibility to infection in inbred strains of mice. Experimental Parasitology 48,364374.CrossRefGoogle ScholarPubMed
Murray, M., Trail, J. C., Davis, C. E. and Black, S. J. (1984). Genetic resistance to African Trypanosomiasis. Journal of Infectious Diseases 149, 311319.CrossRefGoogle ScholarPubMed
Naessens, J., Mwangi, D. M., Buza, J. and Moloo, S. K. (2003). Local skin reaction (chancre) induced following inoculation of metacyclic trypanosomes in cattle by tsetse flies is dependent on CD4 T lymphocytes. Parasite Immunology 25, 413419.CrossRefGoogle ScholarPubMed
Namangala, B., De Baetselier, P., Brijs, L., Stijlemans, B., Noel, W., Pays, E., Carrington, M. and Beschin, A. (2000). Attenuation of Trypanosoma brucei is associated with reduced immunosuppression and concomitant production of Th2 lymphokines. Journal of Infectious Diseases 181, 11101120.CrossRefGoogle ScholarPubMed
Namangala, B., De Baetselier, P., Noel, W., Brys, L. and Beschin, A. (2001). Alternative versus classical macrophage activation during experimental African trypanosomosis. Journal of Leukocyte Biology 69, 387396.CrossRefGoogle ScholarPubMed
Okomo-Assoumou, M. C., Daulouede, S., Lemesre, J. L., N'zila-Mouanda, A. and Vincendeau, P. (1995). Correlation of high serum levels of tumor necrosis factor-alpha with disease severity in human African trypanosomiasis. American Journal of Tropical Medicine and Hygiene 53, 539543.CrossRefGoogle ScholarPubMed
Ormerod, W. E. (1961). The epidemic spread of Rhodesian Sleeping Sickness 1908–1960. Transactions of the Royal Society of Tropical Medicine and Hygiene 55, 525538.CrossRefGoogle Scholar
Ormerod, W. E. (1967). Taxonomy of the Sleeping Sickness Trypanosomes. Journal of Parasitology 53, 824830.CrossRefGoogle ScholarPubMed
Rickman, L. R. (1974). Investigations into an outbreak of human trypanosomiasis in the lower Luangwa Valley, Eastern Province, Zambia. East African Medical Journal 51, 467487.Google ScholarPubMed
Ross, R. and Thomson, D. (1910). A case of sleeping sickness studies by precise enumerative methods; regular periodical increases of the parasites disclosed. Proceedings of the Royal Society B 82, 411415.Google Scholar
Smith, D. H. and Bailey, J. W. (1997). Human African trypanosomiasis in south-eastern Uganda: clinical diversity and isoenzyme profiles. Annals of Tropical Medicine and Parasitology 91, 851856.CrossRefGoogle ScholarPubMed
Stannus, H. S. and Yorke, W. (1911). The pathogenic agent in a case of Human Trypanosomiasis in Nyasaland. Proceedings of the Royal Society B 84, 156160.Google Scholar
Sternberg, J. and Tait, A. (1990). Genetic exchange in African trypanosomes. Trends in Genetics 6, 317322.CrossRefGoogle ScholarPubMed
Stevens, J. R. and Godfrey, D. G. (1992). Numerical taxonomy of Trypanozoon based on polymorphisms in a reduced range of enzymes. Parasitology 104, 7586.CrossRefGoogle Scholar
Stijlemans, B., Baral, T. N., Guilliams, M., Brys, L., Korf, J., Drennan, M., Van Den Abbeele, J., De Baetselier, P. and Magez, S. (2007). A glycosylphosphatidylinositol-based treatment alleviates trypanosomiasis-associated immunopathology. Journal of Immunology 179, 40034014.CrossRefGoogle ScholarPubMed
Truc, P., Formenty, P., Diallo, P. B., Komoin-Oka, C. and Lauginie, F. (1997). Confirmation of two distinct classes of zymodemes of Trypanosoma brucei infecting man and wild mammals in Cote d'Ivoire: suspected difference in pathogenicity. Annals of Tropical Medicine and Parasitology 91, 951956.CrossRefGoogle ScholarPubMed
Turner, C. M., Aslam, N. and Dye, C. (1995). Replication, differentiation, growth and the virulence of Trypanosoma brucei infections. Parasitology 111, 289300.CrossRefGoogle ScholarPubMed
Turner, C. M. R., Aslam, N. and Angus, S. D. (1996). Inhibition of growth of Trypanosoma brucei parasites in chronic infections. Parasitology Research 82, 6166.CrossRefGoogle ScholarPubMed
Vanhamme, L., Paturiaux-Hanocq, F., Poelvoorde, P., Nolan, D. P., Lins, L., Van Den Abbeele, J., Pays, A., Tebabi, P., Van Xong, H., Jacquet, A., Moguilevsky, N., Dieu, M., Kane, J. P., De Baetselier, P., Brasseur, R. and Pays, E. (2003). Apolipoprotein L-I is the trypanosome lytic factor of human serum. Nature 422, 8387.CrossRefGoogle ScholarPubMed
Vanhollebeke, B., Truc, P., Poelvoorde, P., Pays, A., Joshi, P. P., Katti, R., Jannin, J. G. and Pays, E. (2006). Human Trypanosoma evansi infection linked to a lack of apolipoprotein L-I. New England Journal of Medicine 355, 27522756.CrossRefGoogle ScholarPubMed
Vassella, E., Reuner, B., Yutzy, B. and Boshart, M. (1997). Differentiation of African trypanosomes is controlled by a density sensing mechanism which signals cell cycle arrest via the cAMP pathway. Journal of Cell Science 110, 26612671.CrossRefGoogle ScholarPubMed
WHO (2006). Human African trypanosomiasis (sleeping sickness): epidemiological update. Weekly Epidemiological Record 81, 7180.Google Scholar
Webb, H., Carnall, N., Vanhamme, L., Rolin, S., Van Den Abbeele, J., Welburn, S., Pays, E. and Carrington, M. (1997). The GPI-phospholipase C of Trypanosoma brucei is nonessential but influences parasitemia in mice. Journal of Cell Biology 139, 103114.CrossRefGoogle ScholarPubMed
Welburn, S. C., Fevre, E. M., Coleman, P. G., Odiit, M. and Maudlin, I. (2001). Sleeping sickness: a tale of two diseases. Trends in Parasitology 17, 1924.CrossRefGoogle ScholarPubMed
Wery, M. and Burke, J. (1972). Human “healthy carriers” of Trypanosoma (brucei type) discovered by immunofluorescence test in the Republique Democratique du Congo. Transactions of the Royal Society of Tropical Medicine and Hygiene 66, 332333.CrossRefGoogle ScholarPubMed
Wurapa, F. K., Dukes, P., Njelesani, E. K. and Boatin, B. (1984). A “healthy carrier” of Trypanosoma rhodesiense: a case report. Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 349350.CrossRefGoogle Scholar