Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T09:29:14.124Z Has data issue: false hasContentIssue false

Ultrastructural changes associated with exsheathment of infective juveniles of Haemonchus contortus

Published online by Cambridge University Press:  06 April 2009

D. A. Wharton
Affiliation:
Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand

Extract

Ultrastructural changes associated with exsheathment of the infective juveniles of Haemonchus contortus are described. Hyaline ring formation occurs associated with annulations 10 and 20 and consists of the dissolution of the basal zone and the inner electron-dense layer resulting in the rupture of the sheath. These changes are consistent with the action of a protease-exsheathing enzyme. There is a significant reduction associated with exsheathment in the size of the excretory cells and the number of excretory granules contained within them. No changes in the oesophagus were observed associated with exsheathment. These, and the observations of earlier workers, suggest that it is the excretory cells and not the oesophagus which are the source of exsheathing fluid during exsheathment.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrett, J. (1981). Biochemistry of Parasitic Helminths. London: Macmillan.CrossRefGoogle Scholar
Bird, A. F. (1990). Vital staining of glycoprotein secreted by infective third stage larvae of Haemonchus contortus prior to exsheathment. International Journal for Parasitology 12, 503–7.Google Scholar
Brængaard, H. & Gundersen, H. J. G. (1986). The impact of recent stereological advances on quantitative studies of the nervous system. Journal of Neuroscience Methods 18, 3978.CrossRefGoogle Scholar
Davey, K. G. & Rogers, W. P. (1982). Changes in water content and volume accompanying exsheathment in Haemonchus contortus. International Journal for Parasitology 12, 93–6.CrossRefGoogle ScholarPubMed
Davey, K. G. & Sommerville, R. I. (1982). Changes in optical path difference in the oesophageal region and the excretory cells during exsheathment in Haemonchus contortus. International Journal for Parasitology 12, 503–7.CrossRefGoogle ScholarPubMed
Davey, K. G., Sommerville, R. I. & Rogers, W. P. (1982). The effect of ethoxyzolamide, an analogue of insect juvenile hormone, nor-adrenaline and iodine on changes in the optical path difference in the excretory cells and oesophagus during exsheathment in Haemonchus contortus. International Journal for Parasitology 12, 509–13.CrossRefGoogle ScholarPubMed
Gamble, H. R., Lichtenfels, J. R. & Purcell, J. P. (1989 a). Light and scanning electron microscopy of the ecdysis of Haemonchus contortus infective larvae. Journal of Parasitology 75, 303–7.CrossRefGoogle ScholarPubMed
Gamble, H. R., Purcell, J. P. & Fetterer, R. H. (1989 b). Purification of a 44 kilodalton protease which mediates the ecdysis of infective Haemonchus contortus larvae. Molecular and Biochemical Parasitology 33, 4958.CrossRefGoogle ScholarPubMed
Greenaway, P. (1970). Sodium regulation in the freshwater mollusc Limnea stagnalis (L) (Gastropoda, Pulmonata). Journal of Experimental Biology 53, 147–63.CrossRefGoogle Scholar
Gundersen, H. J. G., Bendtsen, T. F., Korbo, L., Marcussen, N., MØller, A., Nielsen, K., Nyengaard, J. R., Pakkenberg, B., SØRensen, F. B., Vesterby, A. & West, M. J. (1988). Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. Acta Pathologica, Microbiologica et Immunologica Scandinavica 96, 379–94.CrossRefGoogle Scholar
Lapage, G. (1935). The second ecdysis of infective nematode larvae. Parasitology 27, 186206.CrossRefGoogle Scholar
Ozerol, N. H. & Silverman, P. H. (1972). Exsheathment phenomenon in the infective-stage larvae of Haemonchus contortus. Journal of Parasitology 58, 3444.CrossRefGoogle ScholarPubMed
Rogers, W. P. (1960). The physiology of the infective process of nematode parasites; the stimulus from the animal host. Proceedings of the Royal Society of London, B 152, 367–86.Google ScholarPubMed
Rogers, W. P. (1982). Enzymes in the exsheathing fluid of nematodes and their biological significance. International Journal for Parasitology 12, 495502.CrossRefGoogle ScholarPubMed
Rogers, W. P. & Petronijevic, T. (1982). The infective stage and the development of nematodes. In Biology and Control of Endoparasites (ed. Symons, L. E. A., Donald, A. D. & Dineen, J. K.). New York and London: Academic Press.Google Scholar
Rogers, W. P. & Sommerville, R. I. (1960). The physiology of the second ecdysis of parasitic nematodes. Parasitology 50, 329–48.CrossRefGoogle ScholarPubMed
Slocombe, J. O. D. & Whitlock, J. H. (1969). Rapid ecdysis of infective Haemonchus cayugensis larvae. Journal of Parasitology 55, 1102–3.CrossRefGoogle Scholar
Sommerville, R. I. (1957). The exsheathing mechanism of nematode infective larvae. Experimental Parasitology 6, 1830.CrossRefGoogle ScholarPubMed
Wharton, D. A. (1986). The structure of the cuticle and sheath of the infective juvenile of Trichostrongylus colubriformis. Parasitology Research 72, 779–87.Google ScholarPubMed
Wharton, D. A., Perry, R. N. & Beane, J. (1983). The effect of osmotic stress on behaviour and water content of infective larvae of Trichostrongylus colubriformis. International Journal for Parasitology 13, 185–90.CrossRefGoogle ScholarPubMed
Wharton, D. A. & Sommerville, R. I. (1984). The structure of the excretory system of the infective larva of Haemonchus contortus. International Journal for Parasitology 14, 591600.CrossRefGoogle ScholarPubMed