Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T12:38:57.520Z Has data issue: false hasContentIssue false

Essay Review: Topics in the Foundations of General Relativity and Newtonian Gravitation Theory

Published online by Cambridge University Press:  01 January 2022

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Essay Reviews
Copyright
Copyright © The Philosophy of Science Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bain, J. 2004. “Theories of Newtonian Gravity and Empirical Indistinguishability.” Studies in History and Philosophy of Modern Physics 35:345–76.CrossRefGoogle Scholar
Brown, H. 2005. Physical Relativity: Space-Time Structure from a Dynamical Perspective. Oxford: Clarendon.CrossRefGoogle Scholar
Cartan, E. 1923. “Sur les variétés a connexion affine et la Théorie de la Relativité généralisée.” Annales Scientifiques de l’Ecole Normale Supérieure 40:325412.CrossRefGoogle Scholar
Cartan, E.. 1924. “Sur les variétés a connexion affine et la Théorie de la Relativité généralisée.” Annales Scientifiques de l’Ecole Normale Supérieure 41:125.CrossRefGoogle Scholar
Dowker, F. 2005. “Causal Sets and the Deep Structure of Spacetime.” In 100 Years of Relativity: Space-Time Structure: Einstein and Beyond, ed. Ashtekar, A.. London: World Scientific.Google Scholar
Earman, J. 1989. World Enough and Space-Time. Cambridge, MA: MIT Press.Google Scholar
Earman, J.. 1995. Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausalities in Relativistic Spacetimes. New York: Oxford University Press.Google Scholar
Ehlers, J. 1981. “Über den Newtonschen Grenzwert der Einsteinschen Gravitationstheorie.” In Grundlagen Probleme der Modernen Physik, ed. Nitsch, J., Pfarr, J., and Stachow, E.. Zurich: Bibliographisches Institut.Google Scholar
Friedman, M. 1983. Foundations of Space-Time Theories. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Friedrichs, K. 1927. “Eine Invariante Formulierun des Newtonschen Gravitationsgesetzes und der Grenzüberganges vom Einsteinschen zum Newtonschen Gesetz.” Mathematische Annalen 98:566–75.Google Scholar
Geroch, R. 1978. General Relativity from A to B. Chicago: University of Chicago Press.Google Scholar
Glymour, C. 1977. “The Epistemology of Geometry.” Noûs 11:227–51.CrossRefGoogle Scholar
Gödel, K. 1949. “An Example of a New Type of Cosmological Solutions of Einstein's Field Equations of Gravitation.” Reviews of Modern Physics 21:447–50.CrossRefGoogle Scholar
Hawking, S. W., and Ellis, G. F. R.. 1973. The Large Scale Structure of Space-Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Joshi, P. 1993. Global Aspects in Gravitation and Cosmology. Oxford: Oxford University Press.Google Scholar
Künzle, H. 1976. “Covariant Newtonian Limit of Lorentz Space-Times.” General Relativity and Gravitation 7:445–57.CrossRefGoogle Scholar
Malament, D. 1985. “Minimal Acceleration Requirements for ‘Time Travel’ in Gödel Space-Time.” Journal of Mathematical Physics 26:774–77.CrossRefGoogle Scholar
Malament, D.. 1986. “Newtonian Gravity, Limits, and the Geometry of Space.” In Quarks to Quasars, ed. Colodny, R.. Pittsburgh: University of Pittsburgh Press.Google Scholar
Manchak, J. 2011. “On Efficient ‘Time Travel’ in Gödel Spacetime.” General Relativity and Gravitation 43:5160.CrossRefGoogle Scholar
Misner, C. 1967. “Taub-NUT Space as a Counterexample to Almost Anything.” In Relativity Theory and Astrophysics I: Relativity and Cosmology, ed. Ehlers, J.. Providence, RI: American Mathematical Society.Google Scholar
Natário, J. 2012. “Optimal Time Travel in the Gödel Universe.” General Relativity and Gravitation 44:855–74.CrossRefGoogle Scholar
Norton, J. 1993. “A Paradox in Newtonian Gravitation Theory.” In PSA 1992: Proceedings of the 1992 Biennial Meeting of the Philosophy of Science Association, ed. Forbes, M., Hull, D., and Okruhlik, K.. East Lansing, MI: Philosophy of Science Association.Google Scholar
Sklar, L. 1974. Space, Time, and Spacetime. Berkeley: University of California Press.Google Scholar
Smeenk, C., and Wüthrich, C.. 2011. “Time Travel and Time Machines.” In The Oxford Handbook of Time, ed. Callender, C.. Oxford: Oxford University Press.Google Scholar
Sorkin, R. 2005. “Causal Sets: Discrete Gravity.” In Lectures on Quantum Gravity, ed. Gomberoff, A. and Marolf, D.. New York: Plenum.Google Scholar
Stein, H. 1967. “Newtonian Space-Time.” Texas Quarterly 10:174200.Google Scholar
Stein, H.. 1970. “On the Paradoxical Time-Structures of Gödel.” Philosophy of Science 37:589601.CrossRefGoogle Scholar
Tamir, M. 2012. “Proving the Principle: Taking Geodesic Dynamics Too Seriously in Einstein's Theory.” Studies in History and Philosophy of Modern Physics, forthcoming.CrossRefGoogle Scholar
Trautman, A. 1965. “Foundations and Current Problem of General Relativity.” In Space-Time, ed. Deser, S. and Ford, K.. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Wald, R. 1984. General Relativity. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Weatherall, J. 2011a. “On (Some) Explanations in Physics.” Philosophy of Science 78:421–47.CrossRefGoogle Scholar
Weatherall, J.. 2011b. “On the Status of the Geodesic Principle in Newtonian and Relativistic Physics.” Studies in History and Philosophy of Modern Physics 42:276–81.CrossRefGoogle Scholar