Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T06:45:53.709Z Has data issue: false hasContentIssue false

On the role of locality in learning stress patterns*

Published online by Cambridge University Press:  25 August 2009

Jeffrey Heinz
Affiliation:
University of Delaware

Abstract

This paper presents a previously unnoticed universal property of stress patterns in the world's languages: they are, for small neighbourhoods, neighbourhood-distinct. Neighbourhood-distinctness is a locality condition defined in automata-theoretic terms. This universal is established by examining stress patterns contained in two typological studies. Strikingly, many logically possible – but unattested – patterns do not have this property. Not only does neighbourhood-distinctness unite the attested patterns in a non-trivial way, it also naturally provides an inductive principle allowing learners to generalise from limited data. A learning algorithm is presented which generalises by failing to distinguish same-neighbourhood environments perceived in the learner's linguistic input – hence learning neighbourhood-distinct patterns – as well as almost every stress pattern in the typology. In this way, this work lends support to the idea that properties of the learner can explain certain properties of the attested typology, an idea not straightforwardly available in optimality-theoretic and Principle and Parameter frameworks.

Type
Articles
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrahamson, Arne (1968). Contrastive distribution of phoneme classes in Içuã Tupi. Anthropological Linguistics 10:6. 1121.Google Scholar
Albro, Daniel M. (2005). Studies in computational Optimality Theory, with special reference to the phonological system of Malagasy. PhD dissertation, University of California, Los Angeles.Google Scholar
Angluin, Dana (1980). Inductive inference of formal languages from positive data. Information Control 45. 117135.Google Scholar
Angluin, Dana (1982). Inference of reversible languages. Journal for the Association of Computing Machinery 29. 741765.CrossRefGoogle Scholar
Anthony, Martin & Biggs, Norman (1992). Computational learning theory. Cambridge: Cambridge University Press.Google Scholar
Bailey, Todd M. (1995). Nonmetrical constraints on stress. PhD dissertation, University of Minnesota. (Stress System Database available (June 2009) at http://www.cf.ac.uk/psych/subsites/ssdb/.)Google Scholar
Barker, M. A. R. (1963). Klamath dictionary. Berkeley & Los Angeles: University of California Press.Google Scholar
Barker, M. A. R. (1964). Klamath grammar. Berkeley & Los Angeles: University of California Press.Google Scholar
Bhatt, Rakesh (1989). Syllable weight and metrical structure of Kashmiri. Ms, University of Illinois, Urbana.Google Scholar
Boas, Franz & Deloria, Ella (1941). Dakota grammar. Washington: United States Government Printing Office.Google Scholar
Boersma, Paul (1997). How we learn variation, optionality, and probability. Proceedings of the Institute of Phonetic Sciences of the University of Amsterdam 21. 4358.Google Scholar
Boersma, Paul & Hayes, Bruce (2001). Empirical tests of the Gradual Learning Algorithm. LI 32. 4586.Google Scholar
Brame, Michael K. (1974). The cycle in phonology: stress in Palestinian, Maltese, and Spanish. LI 5. 3960.Google Scholar
Chafe, Wallace L. (1977). Accent and related phenomena in the Five Nations Iroquois languages. In Hyman (1977b). 169181.Google Scholar
Chambers, Kyle E., Onishi, Kristine H. & Fisher, Cynthia (2003). Infants learn phonotactic regularities from brief auditory experience. Cognition 87. B69B77.CrossRefGoogle ScholarPubMed
Chomsky, Noam (1957). Syntactic structures. The Hague: Mouton.Google Scholar
Chomsky, Noam & Halle, Morris (1965). Some controversial questions in phonological theory. JL 1. 97138.Google Scholar
Chomsky, Noam & Halle, Morris (1968). The sound pattern of English. New York: Harper & Row.Google Scholar
Clark, Robin (1992). The selection of syntactic knowledge. Language Acquisition 2. 83149.CrossRefGoogle Scholar
Coleman, John (2005). Introducing speech and language processing. Cambridge: Cambridge University Press.Google Scholar
Crowhurst, Megan & Michael, Lev (2005). Iterative footing and prominence-driven stress in Nanti (Kampa). Lg 81. 4795.Google Scholar
Denis, François, Lemay, Aurélien & Terlutte, Alain (2002). Some classes of regular languages identifiable in the limit from positive data. In Adriaans, Peter, Fernau, Henning & van Zaanen, Menno (eds.) Proceedings of the 6th International Colloquium on Grammatical Inference (ICGI). Berlin: Springer. 6376.Google Scholar
Donaldson, Bruce C. (1993). A grammar of Afrikaans. Berlin & New York: Mouton de Gruyter.CrossRefGoogle Scholar
Dresher, B. Elan (1999). Charting the learning path: cues to parameter setting. LI 30. 2767.Google Scholar
Dresher, B. Elan & Kaye, Jonathan D. (1990). A computational learning model for metrical phonology. Cognition 34. 137195.CrossRefGoogle ScholarPubMed
Edlefsen, Matt, Leeman, Dylan, Meyers, Nathan, Smith, Nathaniel, Visscher, Molly & Wellcome, David (2008). Deciding Strictly Local (SL) languages. In Proceedings of the Midstates Conference for Undergraduate Research in Computer Science and Mathematics 6. 675.Google Scholar
Eisner, Jason (1997a). Efficient generation in primitive Optimality Theory. In Proceedings of the 35th Annual Meeting of the ACL and 8th EACL. Madrid. 313320.CrossRefGoogle Scholar
Eisner, Jason (1997b). What constraints should OT allow? Handout from paper presented at the 71st Annual Meeting of the Linguistic Society of America, Chicago. Available as ROA-204 from the Rutgers Optimality Archive.Google Scholar
Eisner, Jason (1998). FootForm decomposed: using primitive constraints in OT. MIT Working Papers in Linguistics 31. 115143.Google Scholar
Ellison, T. Mark (1991). The iterative learning of phonological constraints. Ms, University of Western Australia.Google Scholar
Ellison, T. Mark (1992). The machine learning of phonological structure. PhD dissertation, University of Western Australia.Google Scholar
Ellison, T. Mark (1994). Phonological derivation in Optimality Theory. In Proceedings of the 15th International Conference on Computational Linguistics (COLING). Kyoto. 10071013.CrossRefGoogle Scholar
Everett, Daniel (1988). On metrical constituent structure in Pirahã phonology. NLLT 6. 207246.Google Scholar
Fairbanks, Constance (1981). The development of Hindi oral narrative meter. PhD dissertation, University of Wisconsin, Madison.Google Scholar
Fennell, Trevor G. & Gelsen, Henry (1980). A grammar of modern Latvian. 3 vols. The Hague: Mouton.Google Scholar
Fernau, Henning (2003). Identification of function distinguishable languages. Theoretical Computer Science 290. 16791711.CrossRefGoogle Scholar
Frank, Robert & Satta, Giorgio (1998). Optimality Theory and the generative complexity of constraint violability. Computational Linguistics 24. 307315.Google Scholar
Garcia, Pedro, Vidal, Enrique & Oncina, José (1990). Learning locally testable languages in the strict sense. In Arikawa, S., Goto, S., Ohsuga, S. & Yokomori, T. (eds.) Algorithmic learning theory: 1st International Workshop. 325338.Google Scholar
Gerdemann, Dale & van Noord, Gertjan (2000). Approximation and exactness in finite state optimality theory. In Eisner, Jason, Karttunen, Lauri & Thériault, Alain (eds.) Finite-state phonology: Proceedings of the 5th Workshop of the ACL Special Interest Group in Computational Phonology (SIGPHON). Luxemburg. 3445.Google Scholar
Gibson, Edward & Wexler, Kenneth (1994). Triggers. LI 25. 407454.Google Scholar
Gildea, Daniel & Jurafsky, Daniel (1996). Learning bias and phonological-rule induction. Computational Linguistics 22. 497530.Google Scholar
Gillis, Steven, Durieux, Gert & Daelemans, Walter (1995). A computational model of P&P: Dresher and Kaye (1990) revisited. In Verrips, Maaike & Wijnen, Frank (eds.) Approaches to parameter setting. Amsterdam: University of Amsterdam. 135173.Google Scholar
Goedemans, Rob, Hulst, Harry van der & Visch, Ellis (eds.) (1996). Stress patterns of the world. Part 1: Background. The Hague: Holland Academic Graphics.Google Scholar
Gold, E. M. (1967). Language identification in the limit. Information and Control 10. 447474.Google Scholar
Goldsmith, John (1994). A dynamic computational theory of accent systems. In Cole, Jennifer & Kisseberth, Charles (eds.) Perspectives in phonology. Stanford: CSLI. 128.Google Scholar
Goldsmith, John & Riggle, Jason (ms). Information theoretic approaches to phonological structure: the case of Finnish vowel harmony.Google Scholar
Goldwater, Sharon (2006). Non parametric Bayesian models of language acquisition. PhD dissertation, Brown University.Google Scholar
Goldwater, Sharon & Johnson, Mark (2003). Learning OT constraint rankings using a Maximum Entropy model. In Spenador, Jennifer, Eriksson, Anders & Dahl, Östen (eds.) Proceedings of the Stockholm Workshop on Variation within Optimality Theory. Stockholm: Stockholm University. 111120.Google Scholar
Gordon, Matthew (2002). A factorial typology of quantity-insensitive stress. NLLT 20. 491552. Additional appendices available (June 2009) at http://www.linguistics.ucsb.edu/faculty/gordon/pubs.html.Google Scholar
Graf, Tomas (to appear). Comparing incomparable frameworks: a model theoretic approach to phonology. Proceedings of the Penn Linguistics Colloquium.Google Scholar
Greenberg, Joseph H. (1963). Some universals of grammar with particular reference to the order of meaningful elements. In Greenberg, Joseph H. Universals of language. Cambridge, Mass.: MIT Press. 73113.Google Scholar
Greenberg, Joseph H. (1978). Some generalisations concerning initial and final consonant clusters. In Greenberg, Joseph H. (ed.) Universals of human languages. Vol. 2: Phonology. Stanford: Stanford University Press. 243279.Google Scholar
Gupta, Prahlad & Touretzky, David (1991). What a perceptron reveals about metrical phonology. In Proceedings of the 13th Annual Conference of the Cognitive Science Society. 334339.Google Scholar
Gupta, Prahlad & Touretzky, David (1994). Connectionist models and linguistic theory: investigations of stress systems in language. Cognitive Science 18. 150.CrossRefGoogle Scholar
Halle, Morris (1978). Knowledge unlearned and untaught: what speakers know about the sounds of their language. In Halle, Morris, Bresnan, Joan & Miller, George A. (eds.) Linguistic theory and psychological reality. Cambridge, Mass.: MIT Press. 294303.Google Scholar
Halle, Morris & Vergnaud, Jean-Roger (1987). An essay on stress. Cambridge, Mass.: MIT Press.Google Scholar
Hammond, Michael (1986). The obligatory-branching parameter in metrical theory. NLLT 4. 185228.Google Scholar
Hammond, Michael (1987). Hungarian cola. Phonology Yearbook 4. 267269.Google Scholar
Harrison, Michael A. (1978). Introduction to formal language theory. Reading: Addison Wesley.Google Scholar
Hayes, Bruce (1995). Metrical stress theory: principles and case studies. Chicago: University of Chicago Press.Google Scholar
Hayes, Bruce & Wilson, Colin (2008). A maximum entropy model of phonotactics and phonotactic learning. LI 39. 379440.Google Scholar
Heinz, Jeffrey (2006). Learning quantity insensitive stress systems via local inference. In Wicentowski, Richard & Kondark, Grzegorz (eds.) Proceedings of the 8th Meeting of the ACL Special Interest Group in Computational Phonology. New York City. 2130.Google Scholar
Heinz, Jeffrey (2007). The inductive learning of phonotactic patterns. PhD dissertation, University of California, Los Angeles.Google Scholar
Heinz, Jeffrey (2008). Learning left-to-right and right-to-left iterative languages. In Clark, Alexander, Coste, François & Miclet, Laurent (eds.) Grammatical inference: algorithms and applications. Berlin: Springer. 8497.Google Scholar
Higuera, Colin de la (2005). A bibliographical study of grammatical inference. Pattern Recognition 38. 13321348.Google Scholar
Higuera, Colin de la (in press). Grammatical inference: learning automata and grammars. Cambridge: Cambridge University Press.Google Scholar
Hopcroft, John E., Motwani, Rajeev & Ullman, Jeffrey D. (2001). Introduction to automata theory, languages, and computation. Boston: Addison-Wesley.Google Scholar
Hudson, Joyce (1978). The core of Walmatjari grammar. Canberra: Australian Institute of Aboriginal Studies.Google Scholar
Hyde, Brett (2002). A restrictive theory of metrical stress. Phonology 19. 313359.CrossRefGoogle Scholar
Hyman, Larry M. (1977a). On the nature of linguistic stress. In Hyman (1977b). 3782.Google Scholar
Hyman, Larry M.(ed.) (1977b). Studies in stress and accent. Los Angeles: Department of Linguistics, University of Southern California.Google Scholar
Idsardi, William J. (1992). The computation of prosody. PhD dissertation, MIT.Google Scholar
Idsardi, William J. (2008). Calculating metrical structure. In Raimy, Eric & Cairns, Charles E. (eds.) Contemporary views on architecture and representations in phonology. Cambridge, Mass.: MIT Press. 191212.Google Scholar
Jain, Sanjay, Osherson, Daniel, Royer, James S. & Sharma, Arun (1999). Systems that learn: an introduction to learning theory. 2nd edn. Cambridge, Mass.: MIT Press.CrossRefGoogle Scholar
Johnson, C. Douglas (1972). Formal aspects of phonological description. The Hague & Paris: Mouton.Google Scholar
Jones, W. E. (1971). Syllables and word-stress in Hindi. Journal of the International Phonetic Association 1. 7480.Google Scholar
Jurafsky, Daniel & Martin, James H. (2000). Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Kager, René (1999). Optimality Theory. Cambridge: Cambridge University Press.Google Scholar
Kager, René (2007). Feet and metrical stress. In de Lacy, Paul (ed.) The Cambridge handbook of phonology. Cambridge: Cambridge University Press. 195227.Google Scholar
Kaplan, Ronald & Kay, Martin (1994). Regular models of phonological rule systems. Computational Linguistics 20. 331378.Google Scholar
Karttunen, Lauri (1998). The proper treatment of optimality in computational phonology. In Proceedings of the International Workshop on Finite State Methods in Natural Language Processing. Ankara: Bilkent University. 112.Google Scholar
Kearns, Michael & Vazirani, Umesh (1994). An introduction to computational learning theory. Cambridge, Mass.: MIT Press.Google Scholar
Kelkar, Ashok (1968). Studies in Hindi-Urdu. Vol. 1: Introduction and word phonology. Poona: Deccan College.Google Scholar
Kenstowicz, Michael (1983). Parametric variation and accent in the Arabic dialects. CLS 19. 205213.Google Scholar
Kenstowicz, Michael (1993). Peak prominence stress systems and Optimality Theory. In Proceedings of the 1st International Conference of Linguistics and Chosun University. Foreign Culture Research Institute, Chosun University, Kwangju, Korea. 7–22.Google Scholar
Kenstowicz, Michael (1994). Phonology in generative grammar. Cambridge, Mass. & Oxford: Blackwell.Google Scholar
Klimov, G. A. (2001). Megrelskii yazyk. In Alekseev, M. E. (ed.) Yazyki mira: Kavkazskie yazyki. Moscow: Izdatelstvo Academia. 5258.Google Scholar
Kobele, Gregory (2006). Generating copies: an investigation into structural identity in language and grammar. PhD dissertation, University of California, Los Angeles.Google Scholar
Koskenniemi, Kimmo (1983). Two-level morphology: a general computational model for word-form recognition and production. Helsinki: Department of General Linguistics, University of Helsinki.Google Scholar
Kracht, Marcus (2003). The mathematics of language. Berlin & New York: Mouton de Gruyter.Google Scholar
McCarthy, John J. (2003). OT constraints are categorical. Phonology 20. 75–138.CrossRefGoogle Scholar
McCarthy, John J. & Prince, Alan (1986). Prosodic morphology. Ms, University of Massachusetts, Amherst & Brandeis University.Google Scholar
McNaughton, Robert & Papert, Seymour A. (1971). Counter-free automata. Cambridge, Mass.: MIT Press.Google Scholar
Mairal, Ricardo & Gil, Juana (eds.) (2006). Linguistic universals. Cambridge: Cambridge University Press.Google Scholar
Martin, Andrew (2007). The evolving lexicon. PhD dissertation, University of California, Los Angeles.Google Scholar
Michelson, Karin (1988). A comparative study of Lake-Iroquoian accent. Dordrecht: Kluwer.Google Scholar
Mitchell, T. F. (1975). Principles of Firthian linguistics. London: Longman.Google Scholar
Moreton, Elliott (2008). Analytic bias and phonological typology. Phonology 25. 83127.Google Scholar
Muggleton, Stephen (1990). Inductive acquisition of expert knowledge. Wokingham: Addison-Wesley.Google Scholar
Niyogi, Partha (2006). The computational nature of language learning and evolution. Cambridge, Mass.: MIT Press.Google Scholar
Nowak, Martin A., Komarova, Natalia L. & Niyogi, Partha (2002). Computational and evolutionary aspects of language. Nature 417. 611617.Google Scholar
Ohala, Manjari (1977). Stress in Hindi. In Larry Hyman (1977b). 327338.Google Scholar
Oncina, José, García, Pedro & Vidal, Enrique (1993). Learning subsequential transducers for pattern recognition interpretation tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence 15. 448458.Google Scholar
Onishi, Kristine H., Chambers, Kyle E. & Fisher, Cynthia (2002). Learning phonotactic constraints from brief auditory experience. Cognition 83. B13B23.CrossRefGoogle ScholarPubMed
Partee, Barbara H., Meulen, Alice ter & Wall, Robert E. (1990). Mathematical methods in linguistics. Dordrecht: Kluwer.Google Scholar
Payne, Judith (1990). Asheninca stress patterns. In Payne, Doris L. (ed.) Amazonian linguistics: studies in lowland South American languages. Austin: University of Texas Press. 185209.Google Scholar
Pearl, Lisa (2007). Necessary bias in natural language learning. PhD dissertation, University of Maryland, College Park.Google Scholar
Piattelli-Palmarini, Massimo (ed.) (1980). Language and learning: the debate between Jean Piaget and Noam Chomsky. Cambridge, Mass.: Harvard University Press.Google Scholar
Popper, Karl R. (1959). The logic of scientific discovery. New York: Basic Books.Google Scholar
Prince, Alan (1983). Relating to the grid. LI 14. 19100.Google Scholar
Prince, Alan (1990). Quantitative consequences of rhythmic organization. CLS 26:2. 355398.Google Scholar
Prince, Alan & Smolensky, Paul (1993). Optimality Theory: constraint interaction in generative grammar. Ms, Rutgers University & University of Colorado, Boulder. Published 2004, Malden, Mass. & Oxford: Blackwell.Google Scholar
Riggle, Jason (2004). Generation, recognition, and learning in finite-state Optimality Theory. PhD dissertation, University of California, Los Angeles.Google Scholar
Roark, Brian & Sproat, Richard (2007). Computational approaches to morphology and syntax. Oxford: Oxford University Press.Google Scholar
Rogers, James & Pullum, Geoffrey (2007). Aural pattern recognition experiments and the subregular hierarchy. In Kracht, Marcus (ed.) Proceedings of the 10th Mathematics of Language Conference. University of California, Los Angeles. 17.Google Scholar
Sharma, Aryendra (1969). Hindi word-accent. Indian Linguistics 30. 115118.Google Scholar
Sharpe, Margaret C. (1972). Alawa phonology and grammar. Canberra: Australian Institute of Aboriginal Studies.Google Scholar
Shieber, Stuart M. (1985). Evidence against the context-freeness of natural language. Linguistics and Philosophy 8. 333343.CrossRefGoogle Scholar
Sipser, Michael (1997). Introduction to the theory of computation. Boston: PWS Publishing.Google Scholar
Stabler, Edward P. (2009). Computational models of language universals: expressiveness, learnability and consequences. In Christiansen, Morten H., Collins, Chris & Edelman, Simon (eds.) Language universals. Oxford: Oxford University Press. 200223.CrossRefGoogle Scholar
Stowell, T. (1979). Stress systems of the world, unite! MIT Working Papers in Linguistics 1. 5176.Google Scholar
Tenenbaum, Josh (1999). A Bayesian framework for concept learning. PhD dissertation, MIT.Google Scholar
Tesar, Bruce (1998). An iterative strategy for language learning. Lingua 104. 131145.Google Scholar
Tesar, Bruce & Smolensky, Paul (2000). Learnability in Optimality Theory. Cambridge, Mass.: MIT Press.Google Scholar
Valiant, L. (1984). A theory of the learnable. Communications of the ACM 27. 11341142.Google Scholar
Voorhoeve, Clemens L. (1965). The Flamingo Bay dialect of the Asmat language. The Hague: Nijhoff.Google Scholar
Walker, Rachel (2000). Mongolian stress, licensing and factorial typology. Ms, University of California, Santa Cruz. Available as ROA-172 from the Rutgers Optimality Archive.Google Scholar
Wilson, Colin (2006). Learning phonology with substantive bias: an experimental and computational study of velar palatalization. Cognitive Science 30. 945982.CrossRefGoogle ScholarPubMed
Yang, Charles (2000). Knowledge and learning in natural language. PhD dissertation, MIT.Google Scholar
Supplementary material: PDF

Heinz supplementary material

Appendix.pdf

Download Heinz supplementary material(PDF)
PDF 5.9 MB