Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T00:29:20.129Z Has data issue: false hasContentIssue false

Density functional theory meta GGA study of water adsorption in MIL-53(Cr)

Published online by Cambridge University Press:  16 July 2019

E. Cockayne*
Affiliation:
Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: eric.cockayne@nist.gov

Abstract

We use density functional theory meta-generalized gradient approximation TPSS + D3(BJ) + U + J calculations to investigate the energetics and geometry of water molecules in the flexible metal-organic framework material Materials of Institut Lavoisier (MIL)-53(Cr) as a function of cell volume. The critical concentration of water to cause the transition from the large pore (lp) to the narrow pore (np) structure is estimated to be about 0.13 water molecule per Cr. At a concentration x = 1 water molecule per Cr, the zero-temperature np and lp configurations each have a hydrogen bond between the H of each framework hydroxyl group and water oxygen (OW). At intermediate volumes, water dimer-like configurations are observed. A concentration x = 1.25 leads to hydrogen bonding between water molecules in the np phase that is absent for x = 1. Our results suggest possible mechanisms for pore closing in hydrated MIL-53(Cr).

Type
Technical Article
Copyright
Copyright © International Centre for Diffraction Data 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alhamami, M., Doan, H., and Chen, C.-H. (2014). “A review of breathing behaviors of MOFs for gas adsorption,” Materials (Basel) 7, 31983250.Google Scholar
Beurroies, I., Boulhout, M., Llewellyn, P. L., Kuchta, B., Férey, G., Serre, C., and Denoyel, R. (2010). “Using pressure to provoke the structural transition of metal-organic frameworks,” Angew. Chem. Int. Ed. 49, 75267529.Google Scholar
Bourrelly, S., Moulin, B., Rivera, A., Maurin, G., Devautour-Vinot, S., Serre, C., Devic, T., Horcajada, P., Vimont, A., Clet, G., Daturi, M., Lavalley, J.-C., Loera-Serna, S., Denoyel, R., Llewellyn, P. P., and Férey, G. (2010). “Explanation of the adsorption of polar vapors in the highly flexible metal organic framework MIL-53(Cr),” J. Am. Chem. Soc. 132, 94889498.Google Scholar
Brandenburg, J. G., Maas, T., and Grimme, S. (2015). “Benchmarking DFT and semiempirical methods on structures and lattice energies for ten ice polymorphs,” J. Chem. Phys. 142(12), 124104.Google Scholar
Brandenburg, J. G., Bates, J. E., Sun, J., and Perdew, J. P. (2016). “Benchmark tests of a strongly constrained semilocal functional with a long-range dispersion correction,” Phys. Rev. B 94(11), 115144.Google Scholar
Burtch, N. C., Jasuja, H., and Walton, K. S. (2014). “Water stability and adsorption in metal-organic frameworks,” Chem. Rev. 114, 10575–10162.Google Scholar
Canivet, J., Fateeva, A., Guo, Y., Coasne, B., and Farrusseng, D. (2014). “Water adsorption in MOFs: fundamentals and applications,” Chem. Soc. Rev. 43, 55945617.Google Scholar
Cirera, J., Sung, J. C., Howland, P. B., and Paesani, F. (2012). “The effects of electronic polarization on water adsorption in metal-organic frameworks: H2O in MIL-53(Cr),” J. Chem. Phys. 137, 054704.Google Scholar
Cockayne, E. (2017). “Thermodynamics of the flexible metal–-organic framework material MIL-53(Cr) from first-principles,” J. Phys. Chem. C 121(8), 43124317.Google Scholar
Cockayne, E., and Nelson, E. B. (2015). “Density functional theory meta-GGA plus U study of water incorporation in the metal-organic framework material Cu-BTC,” J. Chem. Phys. 143, 024701.Google Scholar
Coombes, D. S., Corå, F., Mellot-Draznieks, C., and Bell, R. G. (2009). “Sorption-induced breathing in the flexible metal organic framework CrMIL-53: force field simulations and electronic structure analysis,” J. Phys. Chem. C 113, 544552.Google Scholar
Coudert, F.-X., Jeffroy, M., Fuchs, A. H., Boutin, A., and Mellot-Draznicks, C. (2008). “Thermodynamics of guest-induced structural transitions in hybrid organic-inorganic frameworks,” J. Am. Chem. Soc. 130, 1429414302.Google Scholar
Devautour-Vinot, S., Maurin, G., Henn, F., Serre, C., Devic, T., and Férey, G. (2009). “Estimation of the breathing energy of flexible MOFs by combining TGA and DSC techniques,” Chem. Commun. (19), 27332735.Google Scholar
Devautour-Vinot, S., Maurin, G., Henn, F., and Serre, C. (2010). “Water and ethanol desorption in the flexible metal-organic frameworks MIL-53 (Cr,Fe), investigated by complex impedance spectroscopy and density functional theory calculations,” Phys. Chem. Chem. Phys. 12, 12748–12485.Google Scholar
Dubbeldam, D., Krishna, R., and Snurr, R. Q. (2009). “Method for analyzing structural changes of flexible metal- organic frameworks induced by adsorbates,” J. Phys. Chem. C 113, 1931719327.Google Scholar
Férey, G., and Serre, C. (2009). “Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules, and consequences,” Chem. Soc. Rev. 38, 13801399.Google Scholar
Furukawa, H., Gándara, F., Zhang, Y.-B., Jiang, J., Queen, W. L., Hudson, M. R., and Yaghi, O. M. (2014). “Water adsorption in porous metal-organic frameworks and related materials,” J. Amer. Chem. Soc. 136, 43694381.Google Scholar
Gillan, M. J., Alfè, D., and Michaelides, A. (2016). “Perspective: how good is DFT for water?,” J. Chem. Phys. 144(13), 130901.Google Scholar
Grimme, S. (2006). “Semiempirical GGA-type density functional constructed with a long-range dispersion correction,” J. Computat. Chem. 27, 17871799.Google Scholar
Grimme, S., Ehrlich, S., and Goerigk, L. (2011). “Effect of the damping function in dispersion corrected density functional theory,” J. Computat. Chem. 32, 14561465.Google Scholar
Guillou, N., Millange, F., and Walton, R. I. (2011). “Rapid and reversible formation of a crystalline hydrate of a metal-organic framework containing a tube of hydrogen-bonded water,” Chem. Commun. 47, 713715.Google Scholar
Haigis, V., Coudert, F.-X., Vuilleumier, R., and Boutin, A. (2013). “Investigation of structure and dynamics of the hydrated metal-organic framework MIL-53(Cr) using first-principles molecular dynamics,” Phys. Chem. Chem. Phys. 15, 1904919055.Google Scholar
Kresse, G., and Furthmuller, J. (1996). “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 1116911187.Google Scholar
Llewellyn, P. L., Maurin, G., Devic, T., Loera-Serna, S., Rosenbach, N., Serre, C., Bourrelly, S., Horcajada, P., Filinchuk, Y., and Férey, G. (2008). “Prediction of the conditions for breathing of metal organic framework materials using a combination of x-ray powder diffraction, microcalorimetry and molecular simulation,” J. Am. Chem. Soc. 130, 1280812814.Google Scholar
Paesani, F. (2012). “Water in metal-organic frameworks: structure and diffusion of H2O in MIL-53(Cr) from quantum simulations,” Mol. Simul. 38, 631641.Google Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M. (1996). “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 38653868.Google Scholar
Perdew, J. P., Ruzsinszky, A., Tao, J., Staroverov, V. N., Scuseria, G. E., and Csonka, G. I. (2005). “Prescription for the design and selection of density functional approximations: more constraint satisfaction with fewer fits,” J. Chem. Phys. 123, 062201.Google Scholar
Perdew, J., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., Zhou, X., and Burke, K. (2008). “Restoring the density-gradient expansion for exchange in solids and surfaces,” Phys. Rev. Lett. 100, 136406.Google Scholar
Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Constantin, L. A., and Sun, J. (2009). “Workhorse semilocal density functional for condensed matter physics and quantum chemistry,” Phys. Rev. Lett. 103(2), 026403.Google Scholar
Pestana, L. R., Mardirossian, N., Head-Gordon, M., and Head-Gordon, T. (2017). “Ab initio molecular dynamics simulations of liquid water using high quality meta-GGA functionals,” Chem. Sci. 8(5), 35543565.Google Scholar
Salazar, J. M., Weber, G., Simon, J. M., Bezverkhyy, I., and Bellat, J. P. (2015). “Characterization of adsorbed water in MIL-53(Al) by FTIR spectroscopy and ab-initio calculations,” J. Chem. Phys. 142, 124702.Google Scholar
Salles, F., Bourrelly, S., Jobic, H., Devic, T., Guillerm, V., Llwewllyn, P., Serra, C., Férey, G., and Maurin, G. (2011). “Molecular insight into the absorption and diffusion of water in the versatile hydrophilic/hydrophobic flexible MIL-53(Cr) MOF,” J. Phys. Chem. C 115, 1076410776.Google Scholar
Santra, B., Michaelides, A., Fuchs, M., Tkatchenko, A., Filippi, C., and Scheffler, M. (2008). “On the accuracy of density-functional theory exchange-correlation functionals for H bonds in small water clusters. II. the water hexamer and van der Waals interactions,” J. Chem. Phys. 129(19), 194111.Google Scholar
Serre, C., Millange, F., Thouvenot, C., Noguès, M., Marsolier, G., Louër, D., and Férey, G. (2002). “Very large breathing effect in the first nanoporous Chromium-III based solids: MIL53 or ….,” J. Am. Chem. Soc. 124, 1351913526.Google Scholar
Sun, J., Marsman, M., Csonka, G., Ruzsinszky, A., Hao, P., Kim, Y.-S., Kresse, G., and Perdew, J. P. (2011). “Self-consistent meta-generalized gradient approximation within the projector-augmented-wave method,” Phys. Rev. B 84, 035117.Google Scholar
Tao, J., Perdew, J. P., Staroverov, V. N., and Scuseria, G. E. (2003). “Climbing the density functional ladder: nonempirical meta–generalized gradient approximation designed for molecules and solids,” Phys. Rev. Lett. 91(14), 146401.Google Scholar
Tran, F., Stelzl, J., and Blaha, P. (2016). “Rungs 1 to 4 of DFT Jacob's ladder: extensive test on the lattice constant, bulk modulus, and cohesive energy of solids,” J. Chem. Phys. 144, 204120.Google Scholar