Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T00:01:13.906Z Has data issue: false hasContentIssue false

Dislocation densities and character evolution in copper deformed by rolling under liquid nitrogen from X-ray peak profile analysis

Published online by Cambridge University Press:  01 March 2012

I. Dragomir-Cernatescu*
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245
M. Gheorghe
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245
N. Thadhani
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245
R. L. Snyder
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245
*
a)Electronic mail: ic21@mail.gatech.edu

Abstract

The microstructure evolution in pure copper deformed by rolling at liquid nitrogen temperature was determined by using X-ray diffraction peak profile analysis. The crystallite size distribution and defects evolution were determined as a function of different reduction levels (e.g., 67%, 74%, 87%, and 97%). By using the Multiple Whole-Profile fitting procedure the Fourier transforms of the experimental X-ray peak profiles were fitted all at once by theoretical calculated functions. Here it is assumed that the crystallites are spherical shape and have a log-normal size distribution. It is also supposed that the strain broadening of the profiles is caused by 〈110〉 {111}-type dislocations. The results show that the median and the variance of the crystallite size distribution decreases as the deformation reduction increases. The dislocation density has a minimum value at 74% reduction. The increase of the dislocation density at higher deformation levels is due to the nucleation of new generation of dislocations from the crystallite grain boundaries. It was found that the edge dislocation type dominate, the dislocation network formed during the deformation process.

Type
XRD Characterization
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cheary, R. W., Dooryhee, E., Lynch, P., Armstrong, N., and Dligatch, S. (2000). J. Appl. Crystallogr. JACGAR 10.1107/S0021889800009936 33, 12711283.CrossRefGoogle Scholar
Conrad, H. (2003). Mater. Sci. Eng., A MSAPE3 10.1016/S0921-5093(02)00238-1 341, 216228.CrossRefGoogle Scholar
Dragomir, I. C. and Ungár, T. (2002). Powder Diffr. PODIE2 10.1154/1.1471520 17, 104111.CrossRefGoogle Scholar
Gubicza, J., Dragomir, I. C., Ribárik, G., Baik, S. C., Zhu, Y. T., Valiev, R. Z., and Ungár, T. (2003). Z. Metallkd. ZEMTAE 94, 11851188.CrossRefGoogle Scholar
Honeycombe, R. W. K. (1984). The Plastic Deformation of Metals (Arnold, London), pp. 83106.Google Scholar
Kumar, K. S., Van Swygenhoven, H., and Suresh, S. (2003). Acta Mater. ACMAFD 10.1016/j.actamat.2003.08.032 51, 57435774.CrossRefGoogle Scholar
Liao, X. Z., Zhao, Y. H., Zhu, Y. T., Valiev, R. Z., and Gunderov, D. V. (2004). J. Appl. Phys. JAPIAU 10.1063/1.1757035 96, 636640.CrossRefGoogle Scholar
Mishra, R. S., McFadden, S. X., Valiev, R. Z., and Mukherjee, A. K. (1999). JOM JOMMER 51(1), 3740.CrossRefGoogle Scholar
Ribárik, G., Ungár, T., and Gubicza, J. (2001). J. Appl. Crystallogr. JACGAR 10.1107/S0021889801011451 34, 669676.CrossRefGoogle Scholar
Sanders, P. G., Eastman, J. A., and Weertman, J. R. (1997). Acta Mater. ACMAFD 10.1016/S1359-6454(97)00092-X 45, 40194025.CrossRefGoogle Scholar
Steeds, J. W. (1973). Introduction to Anisotropic Elasticity Theory of Dislocations (Clarendon, Oxford), pp. 7679.Google Scholar
Stokes, A. R. (1948). Proc. Phys. Soc. London PPSOAU 10.1088/0959-5309/61/4/311 61, 382391.CrossRefGoogle Scholar
Tian, H. H. and Atzmon, M. (1999). Philos. Mag. A PMAADG 10.1080/014186199251698 79, 17691786.CrossRefGoogle Scholar
Ungár, T., Dragomir, I., Révész, Á., and Borbély, A. (1999). J. Appl. Crystallogr. JACGAR 10.1107/S0021889899009334 32, 9921002.CrossRefGoogle Scholar
Ungár, T. and Tichy, G. (1999). Phys. Status Solidi A PSSABA 10.1002/(SICI)1521-396X(199902)171:2<425::AID-PSSA425>3.0.CO;2-W 171, 425434.3.0.CO;2-W>CrossRef3.0.CO;2-W171,+425–434.>Google Scholar
Van Swygenhoven, H. (2004). Mater. Sci. Forum MSFOEP 447–448, 310.CrossRefGoogle Scholar
Van Swygenhoven, H. (2002). Science SCIEAS 10.1126/science.1071040 296, 6667.CrossRefGoogle Scholar
Warren, B. E. and Averbach, B. L. (1950). J. Appl. Phys. JAPIAU 10.1063/1.1699713 21, 595598.CrossRefGoogle Scholar
Wilkens, M. and Eckert, H. Z. (1964). Naturforschung 19a, 459470.CrossRefGoogle Scholar