Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T17:00:41.722Z Has data issue: false hasContentIssue false

Face-sharing octahedra in Cs3Al2F9 and Cs2AlF5

Published online by Cambridge University Press:  11 March 2015

A. Le Bail*
Affiliation:
Institut des Molécules et des Matériaux du Mans, UMR CNRS 6283, Université du Maine, avenue O. Messiaen, 72085 Le Mans Cedex 9, France
L'. Smrčok
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 36 Bratislava, Slovak Republic
*
a)Author to whom correspondence should be addressed. Electronic mail: Armel.Le_Bail@univ-lemans.fr

Abstract

The structure of Cs2AlF5 obtained by thermal dehydration of Cs2AlF5•H2O is determined ab initio from powder diffraction data, space group Pmn21, a = 6.36216 (17) Å, b = 12.7523 (4) Å, c = 11.4102 (3) Å, and Z = 6. Contrarily to most A2MF5 compounds presenting MF5cis or trans-chains of corner-sharing MF6 octahedra, Cs2AlF5 is characterized by the rare occurrence of the face-sharing anion Al2F93− combined with an isolated AlF63− octahedron, the sum leading to Al3F156−. The structure of Cs3Al2F9 [space group P63/mmc, a = 6.2535 (2) Å, c = 14.7193 (6) Å, Z = 2] is confirmed to be isostructural with Cs3Fe2F9, built up from the same M2F93− dimers (M = Fe, Al). Both crystal structures are optimized by energy minimization density funtional theory (DFT) in the solid state using a hybrid PBE0 functional, and their relations with the hexagonal perovskites and elpasolites are discussed.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adil, K., Goreshnik, E., Courant, S., Dujardin, G., Leblanc, M., and Maisonneuve, V. (2004). “Synthesis and structures of new hybrid fluorides templated by tetraprotonated pentaerythrityl tetramine,” Solid State Sci. 6, 12291235.Google Scholar
Babel, D. and Knoke, G. (1978). “Strukturen caesiumhaltiger fluoride. IV. Die kristallstruktur von CsCrF4 – ein neuer tetrafluorometallat-typ mit kettenstruktur,” Z. Anorg. Allg. Chem. 442, 151162.Google Scholar
Bentrup, U. (1991). “M2 I[MIIIF5(H2O)] compounds and their dehydration products-structural aspects (MI = NH4, K, Rb, Cs; MIII = Al, Cr, Fe),” Eur. J. Solid State Inorg. Chem. 28, 13471357.Google Scholar
Bentrup, U., Le Bail, A., Duroy, H., and Fourquet, J. L. (1992). “Polymorphism of CsAlF4. Synthesis and structure of two new crystalline forms,” Eur. J. Solid State Inorg. Chem. 29, 371381.Google Scholar
Blöchl, P. E. (1994). “Projector augmented-wave method,” Phys. Rev. B 50, 1795317979.Google Scholar
Chen, R., Cao, J., and Zhang, Q. (1997). “A study on the phase diagram of AlF3–CsF system,” Thermochim. Acta 303, 145150.Google Scholar
Dance, J. M., Soubeyroux, J. L., Sabatier, R., Fournes, L., Tressaud, A., and Hagenmuller, P. (1980). “Magnetic structures and one-dimensional antiferromagnetism of M2FeIIIF5 fluorides (M = K, Rb, Cs),” J. Magn. Magn. Mater. 15–18, 534536.Google Scholar
Dance, J. M., Mur, J., Darriet, J., Hagenmuller, P., Massa, W., Kummer, S., and Babel, D. (1986). “Magnetic properties of the dimeric iron(III) fluoride: Cs3Fe2F9 ,” J. Solid State Chem. 63, 336451.Google Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.Google Scholar
Fourquet, J. L., Plet, F., and De Pape, R. (1980). “RbAlF4: structure of its β metastable form and description of the mechanism of its irreversible and topotactic phase transition βα ,” Acta Crystallogr. B 36, 19972000.Google Scholar
Fourquet, J. L., Le Bail, A., Duroy, H., and Moron, M. C. (1989). “(NH4)2FeF5: crystal structures of its α and β forms,” Eur. J. Solid State Inorg. Chem. 26, 435443.Google Scholar
Kresse, G. and Hafner, J. (1993). “ Ab initio molecular dynamics for open-shell transition metals,” Phys. Rev. B 48, 1311513118.Google Scholar
Kresse, G. and Hafner, J. (1994). “Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements,” J. Phys.: Condens. Matter 6, 82458527.Google Scholar
Kresse, G. and Furthmüller, J. (1996a). “Efficient iterative scheme for ab initio total energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 1116911186.Google Scholar
Kresse, G. and Furthmüller, J. (1996b). “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 1550.Google Scholar
Kresse, G. and Joubert, J. (1999). “From ultrasoft potentials to the projector augmented wave method,” Phys. Rev. B 59, 17581775.Google Scholar
Le Bail, A. (2001). “ESPOIR: a program for solving structures by Monte Carlo from powder diffraction data,” Mater. Sci. Forum 378–381, 6570.Google Scholar
Le Bail, A. (2004). “Monte Carlo indexing with McMaille,” Powder Diffr. 19, 249254.CrossRefGoogle Scholar
Le Bail, A. (2005). “Whole powder pattern decomposition methods and applications – a retrospection,” Powder Diffr. 20, 316326.Google Scholar
Le Bail, A. (2008). “Structure solution,” in Principles and Applications of Powder Diffraction, edited by Clearfield, A., Reibenspies, J., and Bhuvanesh, N. (Wiley, New York), pp. 261309.Google Scholar
Le Bail, A. (2013). “On two new K2FeF5 forms,” Powder Diffr. 29, 3341.Google Scholar
Le Bail, A. and Smrčok, L'. (2011). “ Ab initio structure determination of 3,4-diaminopyridin-1-ium dihydrogen phosphate,” Powder Diffr. 26, 321325.Google Scholar
Lösch, R. and Hebecker, C. (1979). “Darstellung und Kristallstruktur von CsAlF4,” Z. Naturforsch. 34b, 131134.Google Scholar
Massa, W. and Babel, D. (1988). “Crystal structure and bonding in transition-metal fluoro compounds,” Chem. Rev. 88, 275296.Google Scholar
Oszajca, M., Smrčok, L'., and Lasocha, W. (2013). “Bis(4-methyl-anilinium) and bis-(4-iodo-anilinium) penta-molybdates from laboratory X-ray powder data and total energy minimization,” Acta Crystallogr. C 69, 13671372.Google Scholar
Perdew, J. P., Ernzerhof, M., and Burke, K. (1996). “Rationale for mixing exact exchange with density functional approximations,” J. Chem. Phys. 105, 99829985.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1993). “Recent advances in magnetic-structure determination by neutron powder diffraction,” Physica B 192, 5569.Google Scholar
Sheldrick, G. M. (2008). “A short history of SHELX ,” Acta Crystallogr. A 64, 112122.Google Scholar
Smith, G. S. and Snyder, R. L. (1979). “ F N : a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.Google Scholar
Smrčok, L'., Mach, P., and Le Bail, A. (2013). “Decafluorocyclohex-1-ene at 4.2 K – crystal structure and theoretical analysis of weak interactions,” Acta Crystallogr. B 69, 395404.Google Scholar
Spek, A. L. (2009). “Structure validation in chemical crystallography,” Acta Crystallogr. D 65, 148155.Google Scholar
Xu, F., Matsumoto, K., and Hagiwara, R. (2013). “The first crystallographic example of a face-sharing fluoroaluminate anion Al2F9 3− ,” Dalton Trans. 42, 19651968.Google Scholar
Supplementary material: File

Le Bail and Smrčok supplementary material S1

Le Bail and Smrčok supplementary material S1

Download Le Bail and Smrčok supplementary material S1(File)
File 475.1 KB