I. INTRODUCTION
Deracoxib (sold under the brand name Deramaxx) is a selective cyclooxygenase 2 inhibitor, used in veterinary medicine for the control of pain and inflammation associated with osteoarthritis in dogs. Deracoxib is also used after canine dental procedures and is not recommended for use in cats. The systematic name (CAS Registry Number 169590-41-4) is 4-[3-(difluoromethyl)-5-(3-fluoro-4-methoxyphenyl)pyrazol-1-yl]benzenesulfonamide. A two-dimensional molecular diagram is shown in Figure 1.
We are unaware of any published powder diffraction data on deracoxib. This work was carried out as part of a project (Kaduk et al., Reference Kaduk, Crowder, Zhong, Fawcett and Suchomel2014) to determine the crystal structures of large-volume commercial pharmaceuticals, and include high-quality powder diffraction data for them in the Powder Diffraction File (Gates-Rector and Blanton, Reference Gates-Rector and Blanton2019).
II. EXPERIMENTAL AND REFINEMENTS
Deracoxib was a commercial reagent, purchased from TargetMol (Batch #113281), and was used as-received. The white powder was packed into a 1.5 mm diameter Kapton capillary and rotated during the measurement at ~50 Hz. The powder pattern was measured at 295 K at beamline 11-BM (Antao et al., Reference Antao, Hassan, Wang, Lee and Toby2008; Lee et al., Reference Lee, Shu, Ramanathan, Preissner, Wang, Beno, Von Dreele, Ribaud, Kurtz, Antao, Jiao and Toby2008; Wang et al., Reference Wang, Toby, Lee, Ribaud, Antao, Kurtz, Ramanathan, Von Dreele and Beno2008) of the Advanced Photon Source at Argonne National Laboratory using a wavelength of 0.458208(2) Å from 0.5 to 50° 2θ with a step size of 0.001° and a counting time of 0.1 s step−1. The high-resolution powder diffraction data were collected using twelve silicon crystal analyzers that allow for high angular resolution, high precision, and accurate peak positions. A mixture of silicon (NIST SRM 640c) and alumina (NIST SRM 676a) standards (ratio Al2O3:Si = 2:1 by weight) was used to calibrate the instrument and refine the monochromatic wavelength used in the experiment.
The pattern was indexed using JADE Pro 8.1 (MDI, 2021) on a high-quality primitive orthorhombic unit cell with a = 9.71606, b = 9.54339, c = 38.43565 Å, V = 3563.91 Å3, and Z = 8. The suggested space group was Pbca, which was confirmed by successful solution and refinement of the structure. A reduced cell search in the Cambridge Structural Database (Groom et al., Reference Groom, Bruno, Lightfoot and Ward2016) combined with only C, H, F, N, O, and S elements, yielded no hits.
A deracoxib molecule was downloaded from PubChem (Kim et al., Reference Kim, Chen, Cheng, Gindulyte, He, He, Li, Shoemaker, Thiessen, Yu, Zaslavsky, Zhang and Bolton2019) as Conformer3D_CID_3058754.sdf. It was converted to a *.mol2 file using Mercury (Macrae et al., Reference Macrae, Sovago, Cottrell, Galek, McCabe, Pidcock, Platings, Shields, Stevens, Towler and Wood2020) and to a Fenske-Hall Z-matrix using Open Babel (O'Boyle et al., Reference O'Boyle, Banck, James, Morley, Vandermeersch and Hutchison2011). The structure was solved using FOX (Favre-Nicolin and Černý, Reference Favre-Nicolin and Černý2002) using sinθ/λ max = 0.32 Å−1 (2θ max = 16.9°).
Rietveld refinement was carried out using GSAS-II (Toby and Von Dreele, Reference Toby and Von Dreele2013). Only the 1.0–25.0° portion of the pattern was included in the refinement (d min = 1.058 Å). The region 1.50–2.12°, which contained a peak from the Kapton capillary, was excluded from the refinement. All non-H bond distances and angles were subjected to restraints, based on a Mercury/Mogul Geometry Check (Bruno et al., Reference Bruno, Cole, Kessler, Luo, Sam Motherwell, Purkis, Smith, Taylor, Cooper, Harris and Guy Orpen2004; Sykes et al., Reference Sykes, McCabe, Allen, Battle, Bruno and Wood2011). The Mogul average and standard deviation for each quantity were used as the restraint parameters. The restraints contributed 4.2% to the final χ 2. The hydrogen atoms were included in calculated positions, which were recalculated during the refinement using Materials Studio (Dassault, 2021). The U iso were grouped by chemical similarity. The U iso for the H atoms were fixed at 1.3× the U iso of the heavy atoms to which they are attached. A second-order spherical harmonic model was included in the refinement. The texture index was 1.032(0). The peak profiles were described using the generalized microstrain model. The background was modeled using a 6-term shifted Chebyshev polynomial, plus a peak at 5.81° 2θ to model the scattering from the Kapton capillary and any amorphous component.
The final refinement of 106 variables using 23 413 observations and 72 restraints yielded the residuals R wp = 0.0589 and GOF = 1.26. The largest peak (1.09 Å from C19) and hole (1.01 Å from C17) in the difference Fourier map were 0.19(5) and −0.23(5) eÅ−3, respectively. The largest errors in the difference plot (Figure 2) are in the shapes of some of the strong low-angle peaks.
The structure of deracoxib was optimized using VASP (Kresse and Furthmüller, Reference Kresse and Furthmüller1996) (fixed experimental unit cell) through the MedeA graphical interface (Materials Design, 2016). The calculation was carried out on 16 2.4 GHz processors (each with 4 GB RAM) of a 64-processor HP Proliant DL580 Generation 7 Linux cluster at North Central College. The calculation used the GGA-PBE functional, a plane wave cutoff energy of 400.0 eV, and a k-point spacing of 0.5 Å−1 leading to a 2 × 2 × 1 mesh, and took ~17 h. A single-point density functional theory calculation (fixed experimental cell) and population analysis were carried out using CRYSTAL17 (Dovesi et al., Reference Dovesi, Erba, Orlando, Zicovich-Wilson, Civalleri, Maschio, Rérat, Casassa, Baima, Salustro and Kirtman2018). The basis sets for the H, C, N, and O atoms in the calculation were those of Gatti et al. (Reference Gatti, Saunders and Roetti1994), and those for F and S were those of Peintinger et al. (Reference Peintinger, Oliveira and Bredow2013). The calculations were run on a 3.5 GHz PC using 8 k-points and the B3LYP functional, and took ~3.1 h.
III. RESULTS AND DISCUSSION
The root-mean-square (rms) Cartesian displacement between the Rietveld-refined and DFT-optimized structures of deracoxib is 0.070 Å (Figure 3). The excellent agreement provides strong evidence that the structure is correct (van de Streek and Neumann, Reference van de Streek and Neumann2014). This discussion concentrates on the DFT-optimized structure. The asymmetric unit (with atom numbering) is illustrated in Figure 4. The best view of the crystal structure is down the a-axis (Figure 5). The molecules stack in layers parallel to the ab-plane.
All of the bond distances and angles fall within the normal ranges indicated by a Mercury/Mogul Geometry Check (Macrae et al., Reference Macrae, Sovago, Cottrell, Galek, McCabe, Pidcock, Platings, Shields, Stevens, Towler and Wood2020). The quantum chemical geometry optimization of the deracoxib molecule (DFT/B3LYP/6-31G*/water) using Spartan ‘18 (Wavefunction, 2020) indicated that the observed conformation is very close to a local minimum in energy. A conformational analysis (MMFF force field) indicates that the minimum-energy conformation is 5.9 kcal mol−1 lower in energy, and has a different orientation of the phenyl ring containing the sulfonamide group (~180° rotation). Intermolecular interactions, thus, affect the solid-state conformation.
Analysis of the contributions to the total crystal energy of the structure using the Forcite module of Materials Studio (Dassault, 2021) suggests that the intramolecular deformation energy is dominated by angle deformation terms. The intermolecular energy is dominated by van der Waals and electrostatic attractions, which in this force field analysis also include hydrogen bonds. The hydrogen bonds are better analyzed using the results of the DFT calculation.
There are three traditional hydrogen bonds in the structure (Table I), between the amino group H37–N10–H38 and the sulfonyl group O6–S1–O7, as well as the ring nitrogen atom N9. The energies of the N–H⋯O hydrogen bonds were calculated using the correlation of Wheatley and Kaduk (Reference Wheatley and Kaduk2019). The N–H⋯O hydrogen bonds link the molecules along the b-axis, in chains with the graph set (Etter, Reference Etter1990; Bernstein et al., Reference Bernstein, Davis, Shimoni and Chang1995; Shields et al., Reference Shields, Raithby, Allen and Samuel Motherwell2000) C1,1(4), as well as more-complex patterns. The N–H⋯N hydrogen bonds link the layers. Several intramolecular and intermolecular C–H⋯O and C–H⋯N hydrogen bonds contribute to the crystal energy.
a Intramolecular.
The volume enclosed by the Hirshfeld surface of the deracoxib molecule (Figure 6; Hirshfeld, Reference Hirshfeld1977; Turner et al., Reference Turner, McKinnon, Wolff, Grimwood, Spackman, Jayatilaka and Spackman2017) is 433.26 Å3, 98.32% of 1/8 the unit cell volume. The packing density is thus fairly typical. The only significant close contacts (red in Figure 6) involve the hydrogen bonds. The volume/non-hydrogen atom is 16.3 Å3.
The Bravais–Friedel–Donnay–Harker (Bravais, Reference Bravais1866; Friedel, Reference Friedel1907; Donnay and Harker, Reference Donnay and Harker1937) morphology suggests that we might expect platy morphology for deracoxib, with {001} as the major faces. A second-order spherical harmonic model was included in the refinement. The texture index was 1.032(0), indicating that preferred orientation was small in this rotated capillary specimen.
IV. DEPOSITED DATA
The powder pattern of deracoxib from this synchrotron data set has been submitted to ICDD for inclusion in the Powder Diffraction File. The Crystallographic Information Framework (CIF) files containing the results of the Rietveld refinement (including the raw data) and the DFT geometry optimization were deposited with the ICDD. The data can be requested at pdj@icdd.com.
ACKNOWLEDGEMENTS
The use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work was partially supported by the International Centre for Diffraction Data. We thank Lynn Ribaud and Saul Lapidus for their assistance in the data collection.
CONFLICT OF INTEREST
The authors have no conflict of interest to declare.