Published online by Cambridge University Press: 10 January 2013
Fourier transform methods of smoothing and interpolation are applied to X-ray diffraction data. It is shown that, frequently, too small a step size is used. Major gains are to be expected by selection of the optimum step size and use of these methods.
A comparison of Fourier transforms of diffractograms of quartz measured between 67 and 69° 2θ, collected at varying step intervals (0.1 to 0.01° 2θ) was used to illustrate these applications. By examining the Fourier transform of the diffractogram and noting where it decays to die baseline, a reasonable estimate of the optimal step interval can be obtained. In addition, Fourier interpolation can be used to enhance the appearance of the diffractogram, approximating a continuous plot.