Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T14:09:17.865Z Has data issue: false hasContentIssue false

X-ray powder diffraction data of LaNi0.5Ti0.45Co0.05O3, LaNi0.45Co0.05Ti0.5O3, and LaNi0.5Ti0.5O3 perovskites

Published online by Cambridge University Press:  18 January 2021

Mariana M. V. M. Souza
Affiliation:
Escola de Química, Universidade Federal do Rio de Janeiro (UFRJ), Centro de Tecnologia, Bloco E, Sala 206, Rio de Janeiro, RJCEP 21941-909, Brazil
Alex Maza
Affiliation:
Departamento de Ciencias de la Energía y Mecánica, Carrera de Petroquímica, Universidad de las Fuerzas Armadas – ESPE sede Latacunga, Campus Académico General Guillermo Rodríguez Lara, Belisario Quevedo, Latacunga, Cotopaxi050150, Ecuador
Pablo V. Tuza*
Affiliation:
Departamento de Ciencias de la Energía y Mecánica, Carrera de Petroquímica, Universidad de las Fuerzas Armadas – ESPE sede Latacunga, Campus Académico General Guillermo Rodríguez Lara, Belisario Quevedo, Latacunga, Cotopaxi050150, Ecuador
*
a)Author to whom correspondence should be addressed. Electronic mail: pvtuza@espe.edu.ec

Abstract

In the present work, LaNi0.5Ti0.45Co0.05O3, LaNi0.45Co0.05Ti0.5O3, and LaNi0.5Ti0.5O3 perovskites were synthesized by the modified Pechini method. These materials were characterized using X-ray fluorescence, scanning electron microscopy, and powder X-ray diffraction coupled to the Rietveld method. The crystal structure of these materials is orthorhombic, with space group Pbnm (No 62). The unit-cell parameters are a = 5.535(5) Å, b = 5.527(3) Å, c = 7.819(7) Å, V = 239.2(3) Å3, for the LaNi0.5Ti0.45Co0.05O3, a = 5.538(6) Å, b = 5.528(4) Å, c = 7.825(10) Å, V = 239.5(4) Å3, for the LaNi0.45Co0.05Ti0.5O3, and a = 5.540(2) Å, b = 5.5334(15) Å, c = 7.834(3) Å, V = 240.2(1) Å3, for the LaNi0.5Ti0.5O3.

Type
New Diffraction Data
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M. T., Greenwood, K. B., Taylor, G. A., and Poeppelmeier, K. R. (1993). “B-cation arrangements in double perovskites,” Prog. Solid State Chem. 22(3), 197233.10.1016/0079-6786(93)90004-BCrossRefGoogle Scholar
Attfield, M., Barnes, P., Cockcroft, J. K., and Driessen, H. (2004). Advanced Certificate in Powder Diffraction (School of Crystallography, Birkbeck College, University of London). Available at: http://pd.chem.ucl.ac.uk/pdnn/chapter.htm.Google Scholar
Campbell, K. D. (1992). “Layered and double perovskites as methane coupling catalysts,” Catal. Today 13(2–3), 245253.CrossRefGoogle Scholar
Deng, Z. Q., Smit, J. P., Niu, H. J., Evans, G., Li, M. R., Xu, Z. L., Claridge, J. B., and Rosseinsky, M. J. (2009). “B cation ordered double perovskite Ba2CoMo0.5Nb0.5O6-δ as a potential SOFC cathode,” Chem. Mater. 21(21), 51545162.CrossRefGoogle Scholar
Ezzahi, A., Manoun, B., Ider, A., Bih, L., Benmokhtar, S., Azrour, M., Azdouz, M., Igartua, J. M., and Lazor, P. (2011). “X-ray diffraction and Raman spectroscopy studies of BaSrMWO6 (M=Ni, Co, Mg) double perovskite oxides,” J. Mol. Struct. 985(2–3), 339345.CrossRefGoogle Scholar
Fowlie, J. (2019). Electronic and Structural Properties of LaNiO3-Based Heterostructures (Springer, Cham), p. 2.CrossRefGoogle Scholar
Hayakawa, T., Harihara, H., Andersen, A. G., Suzuki, K., Yasuda, H., Tsunoda, T., Hamakawa, S., York, A. P. E., Yoon, Y. S., Shimizu, M., and Takehira, K. (1997). “Sustainable Ni/Ca1−xSrxTiO3 catalyst prepared in situ for the partial oxidation of methane to synthesis gas,” Appl. Catal., A 149(2), 391410.CrossRefGoogle Scholar
Huang, Y. H., Liang, G., Croft, M., Lehtimäki, M., Karppinen, M., and Goodenough, J. B. (2009). “Double-perovskite anode materials Sr2MMoO6 (M=Co, Ni) for solid oxide fuel cells,” Chem. Mater. 21(11), 23192326.CrossRefGoogle Scholar
ICSD (2017). Inorganic Crystal Structure Database (Database), 76344 Eggenstein-Leopoldshafen, Germany.Google Scholar
Iulianelli, A., Liguori, S., Wilcox, J., and Basile, A. (2016). “Advances on methane steam reforming to produce hydrogen through membrane reactors technology: a review,” Catal. Rev. 58(1), 135.CrossRefGoogle Scholar
Le Bail, A. (2004). “Monte Carlo indexing with McMaille,” Powd. Diffr. 19(3), 249254.CrossRefGoogle Scholar
Li, C., Wang, W., Zhao, N., Liu, Y., He, B., Hu, F., and Chen, C. (2011). “Structure properties and catalytic performance in methane combustion of double perovskites Sr2Mg1-xMnxMoO6-δ,Appl. Catal., B 102(1–2), 7884.CrossRefGoogle Scholar
Martin, C. D. and Parise, J. B. (2008). “Structure constraints and instability leading to the post-perovskite phase transition of MgSiO3,” Earth Planet. Sci. Lett. 265(3–4), 630640.CrossRefGoogle Scholar
Mefford, J. T., Hardin, W. G., Dai, S., Johnston, K. P., and Stevenson, K. J. (2014). “Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes,” Nat. Mater. 13(7), 726732.CrossRefGoogle ScholarPubMed
Momma, K. and Izumi, F. (2011). “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr. 44, 12721276.CrossRefGoogle Scholar
Pérez-Flores, J. C., Ritter, C., Pérez-Coll, D., Mather, G. C., García-Alvarado, F., and Amador, U. (2011). “Synthesis, structures and electrical transport properties of the La2−xSrxNiTiO6−δ (0 ≤ x ≤ 0.5) perovskite series,” J. Mater. Chem. 21(35), 1319513204.CrossRefGoogle Scholar
Provendier, H., Petit, C., and Kiennemann, A. (2001). “Steam reforming of methane on LaNixFexO3 (0<=x<=1) perovskites. Reactivity and characterisation after test,” C. R. Acad. Sci., Ser. IIc: Chim., 4(1), 5766.Google Scholar
Rodríguez, E., Álvarez, I., López, M. L., Veiga, M. L., and Pico, C. (1999). “Structural, electronic, and magnetic characterization of the perovskite LaNi1−xTixO3 (0 ≤ x ≤ 12),” J. Solid State Chem. 148(2), 479486.CrossRefGoogle Scholar
Rodríguez, E., López, M. L., Campo, J., Veiga, M. L., and Pico, C. (2002). “Crystal and magnetic structure of the perovskites La2MTiO6 (M = Co, Ni),” J. Mater. Chem. 12(9), 27982802.CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (1993). “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica B. 192(1–2), 5569.CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (2001). Fullprof Manual (Report). Grenoble: Institute Laue Langevin.Google Scholar
Shaheen, R. and Bashir, J. (2010). “Ca2CoNbO6: a new monoclinically distorted double perovskite,” Solid State Sci. 12(8), 14961499.CrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L. (1979). “FN: a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Tuza, P. V. and Souza, M. M. V. M. (2016). “Steam reforming of methane over catalyst derived from ordered double perovskite: effect of crystalline phase transformation,” Catal. Lett. 146(1), 4753.CrossRefGoogle Scholar
Tuza, P. V. and Souza, M. M. V. M. (2017). “B-cation partial substitution of double perovskite La2NiTiO6 by Co2+: effect on crystal structure, reduction behavior and catalytic activity,” Catal. Commun. 97(1), 9397.10.1016/j.catcom.2017.04.030CrossRefGoogle Scholar
Urasaki, K., Sekine, Y., Kawabe, S., Kikuchi, E., and Matsukata, M. (2005). “Catalytic activities and coking resistance of Ni/perovskites in steam reforming of methane,” Appl. Catal., A 286(1), 2329.CrossRefGoogle Scholar
Yang, W. Z., Liu, X. Q., Lin, Y. Q., and Chen, X. M. (2012). “Structure, magnetic, and dielectric properties of La2Ni(Mn1-xTix)O6 ceramics,” J. Appl. Phys. 111, 084106.CrossRefGoogle Scholar
Zohuri, B. (2019). Small Modular Reactors as Renewable Energy Sources (Springer, Gewerbestrasse), p. 198.CrossRefGoogle Scholar
Supplementary material: File

Souza et al. supplementary material

Souza et al. supplementary material

Download Souza et al. supplementary material(File)
File 251.4 KB