No CrossRef data available.
Article contents
ON INTERVAL AND INSTANT AVAILABILITY OF THE SYSTEM
Published online by Cambridge University Press: 02 March 2020
Abstract
This article considers the interval availability and instant availability of the k-system. A certain relationship between the two types of availability is established. Some lower and upper bounds to interval availability are derived. It also provides a couple of conditions under which the availability of two systems can be compared. Several examples are given to show the complexity of comparisons of availability.
- Type
- Research Article
- Information
- Probability in the Engineering and Informational Sciences , Volume 35 , Issue 3 , July 2021 , pp. 581 - 594
- Copyright
- © Cambridge University Press 2020
References
1.Barlow, R.E., & Proschan, F. (1981). Statistical theory of reliability and life testing: Probability models. Silver Springs, MD: To Begin With.Google Scholar
2.Biswas, A., & Sarkar, J. (2000). Availability of a system maintained through several imperfect repairs before a replacement or a perfect repair. Statistics & Probability Letters 50: 105–114.CrossRefGoogle Scholar
3.Dorado, C., Hollander, M., & Sethuraman, J (1997). Nonparametric estimation for a general repair model. The Annals of Statistics 25: 1140–1160.CrossRefGoogle Scholar
4.Du, S., Zio, E., & Kang, R. (2018). New interval availability indexes for Markov repairable systems. IEEE Transactions on Reliability 67: 118–128.CrossRefGoogle Scholar
5.Huang, K., & Mi, J. (2013). Properties and computation of interval availability of system. Statistics and Probability Letters 83: 1388–1396.CrossRefGoogle Scholar
6.Huang, K., & Mi, J. (2015). Study of instant system availability. Probability in the Engineering and Information Sciences 29: 117–129.CrossRefGoogle Scholar
7.Karlin, S., & Taylor, H. (1975). A first course in stochastic processes, 2nd ed. New York, San Francisco, London: Academic Press.Google Scholar
8.Levitin, G., Xing, L.D., & Dai, Y.S. (2015). Optimal backup frequency in system with random repair time. Reliability Engineering & System Safety 144: 12–22.CrossRefGoogle Scholar
9.Liu, Y., Zuo, M.J., Li, Y.F., & Huang, H.Z. (2015). Dynamic reliability assessment for multi-state systems utilizing system-level inspection data. IEEE Transactions on Reliability 64: 1287–1299.CrossRefGoogle Scholar
10.Mathew, A., & Balakrishna, N. (2014). Nonparametric estimation of the interval reliability. Journal of Statistical Theory and Applications 13: 356–366.CrossRefGoogle Scholar
11.Naseri, M., Baraldi, P., Compare, M., & Zio, E. (2016). Availability assessment of oil and gas processing plants operating under dynamic Arctic weather conditions. Reliability Engineering & System Safety 152: 66–82.CrossRefGoogle Scholar
13.Sabri-Laghaie, K., & Noorossana, R. (2016). Reliability and maintenance models for a competing-risk system subjected to random usage. IEEE Transactions on Reliability 65: 1271–1283.CrossRefGoogle Scholar
14.Shaked, M., & Shanthikumar, J.G. (2007). Stochastic orders. New York: Springer.CrossRefGoogle Scholar
15.Zio, E. (2017). An introduction to the basics of reliability and risk analysis. Singapore: World Scientific.Google Scholar