Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T18:10:28.307Z Has data issue: false hasContentIssue false

DEFICITS IN THE APPLICATION OF ALUMINUM FOAM SANDWICH: AN INDUSTRIAL PERSPECTIVE

Published online by Cambridge University Press:  11 June 2020

P. Hommel*
Affiliation:
University of Stuttgart, Germany
D. Roth
Affiliation:
University of Stuttgart, Germany
H. Binz
Affiliation:
University of Stuttgart, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Aluminum foam sandwich (AFS) is an innovative sandwich material for designing lighter products and has many advantages such as high stiffness and high mechanical-energy absorption capacity. Although AFS is ready for series production, the number of use cases is low. A survey was carried out in order to identify the obstacles in the application of aluminum foam sandwich. This paper presents the results of the survey, derives the demand for a support method for designing with aluminum foam sandwich and shows various support options to simplify the application of the material.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2020. Published by Cambridge University Press

References

Akiyama, S. et al. (1987), Foamed Metal and Method of Producing Same, U.S. Patent 4713277.Google Scholar
Banhart, J. (2018), “Production of Metal Foams”, In: Beaumont, W. R. and Zweben, C. H. (Eds.), Comprehensive Composite Materials II, Vol. 4, Elsevier, pp. 347363. https://doi.org/10.1016/B978-0-12-803581-8.09976-8CrossRefGoogle Scholar
Banhart, J. and Seeliger, H.-W. (2012), “Recent Trends in Aluminum Foam Sandwich Technology”, Advanced Engineering Materials, Vol. 14 No. 12, pp. 10821087. https://doi.org/10.1002/adem.201100333CrossRefGoogle Scholar
Banhart, J. et al. (1998), “Aluminiumschaum – Entwicklungen und Anwendungsmöglichkeiten”, Ingenieur-Werkstoffe, No. 7, pp. 4345.Google Scholar
Banhart, J. et al. (2017), “Light-weighting in transportation and defence using aluminium foam sandwich structures”, International Symposium on Light Weighting for Defence, Aerospace and Transportation, Indian Institute of Metals, Goa, November 11, 2017.Google Scholar
Baumeister, J. (1990), Porous metal body production - involves compaction at low temperature followed by heating to near melting point of metal, German Patent DE 4018360.Google Scholar
Baumeister, J., Banhart, J. and Weber, M. (1994), Verfahren zur Herstellung eines metallischen Verbundwerkstoffs (Process for manufacturing metallic composite materials). German Patent DE 4426627.Google Scholar
Beichelt, C. (2005), Prozesskette AFS, Abschlussbericht Verbundforschungsprojekt, Wilhelm Karmann GmbH, Osnabrück, Germany. https://doi.org/10.2314/GBV:506587037Google Scholar
Binz, H. et al. (2018), “Konstruktion und Herstellung eines Auslegers aus Aluminiumschaum-Sandwich unter Anwendung der Fräskanttechnik”, Konstruktion, No. 07-08/2018, pp. 7882.CrossRefGoogle Scholar
Florek, R. et al. (2014), “Injection molded plastics with aluminium foam core”, Procedia Materials Science, Vol. 4, pp. 323327. http://dx.doi.org/10.1016/j.mspro.2014.07.566CrossRefGoogle Scholar
García-Moreno, F. (2016), “Commercial Applications of Metal Foams: Their Properties and Production”, Materials, Vol. 9 No. 85. https://doi.org/10.3390/ma9020085CrossRefGoogle Scholar
Hannemann, C. et al. (2018), “Manufacturing of foamable semin-finished products for aluminium foam sandwiches produced by extrusion”, Presentation held at 5th Cellular Materials CellMAT, Bad Staffelstein, Germany, October 24-26, 2018. http://publica.fraunhofer.de/eprints/urn_nbn_de_0011-n-5185312.pdfGoogle Scholar
Havel metal foam GmbH (2019), Battery box for the future. [online] Available at: https://en.havel-mf.com/solutions/battery-box (accessed 26.09.2019).Google Scholar
Hipke, T. and Wunderlich, T. (2000), “Chancen und Hemmnisse für den Metallschaumeinsatz”, Materialwissenschaft und Werkstofftechnik, Vol. 31 No. 6, pp. 396399. https://doi.org/10.1002/1521-4052(200006)31:6<396::AID-MAWE396>3.0.CO;2-43.0.CO;2-4>CrossRefGoogle Scholar
Hipke, T. (2002), Analyse, Bewertung und Eignung von Aluminiumschäumen für die Werkzeugmaschinen-konstruktion [PhD Thesis], Chemnitz University of Technology.Google Scholar
Hohlfeld, J., Hipke, T. and Schuller, F. (2018), “Sandwich Manufacturing with Foam Core and Aluminum Face Sheets - A New Process without Rolling”, Materials Science Forum, Vol. 993, pp. 310. https://doi.org/10.4028/www.scientific.net/MSF.933.3CrossRefGoogle Scholar
Hommel, P., Roth, D. and Binz, H. (2019), “Potenziale der Fräskanttechnik beim Fügen von Platten aus Aluminiumschaum-Sandwich”, 5. Stuttgarter Symposium für Produktentwicklung (SSP), Stuttgart, Germany, May 15-16, 2019, pp. 4352. http://dx.doi.org/10.18419/opus-10394CrossRefGoogle Scholar
Metalfoam (2016), Metalfoam: Weltweit einzigartig – Die Lösung für Leichtbaukonstruktionen. [online] pohltec metalfoam GmbH. Available at https://www.metalfoam-afs.de/pdf/metalfoam_Broschuere_AFS_04032016_DE_Web.pdf (accessed 23.09.2019).Google Scholar
Nosko, M., Simančík, F. and Florek, R. (2010), “Reproducibility of aluminum foam properties: Effect of precursor distribution on the structural anisotropy and the collapse stress and its dispersion”, Materials Science and Engineering A, Vol. 527 No. 21-22, pp. 59005908. http://dx.doi.org/10.1016/j.msea.2010.05.073CrossRefGoogle Scholar
Orovčík, L. et al. (2016), “Effects of chemical composition on the pore structure and heat treatment on the deformation of PM aluminium foams 6061 and 7075”, Metallic Materials, Vol. 54 No. 6, pp. 463470. https://doi.org/10.4149/km_2016_6_463CrossRefGoogle Scholar
Schmerler, R. et al. (2017), “Funktionsintegriertes Batteriegehäuse für Elektrofahrzeuge”, Lightweight Design, No. 5/2017, pp. 3237. https://doi.org/10.1007/s35725-017-0047-yCrossRefGoogle Scholar
Schüler, P. (2016), Mechanische Eigenschaften und Versagensmechanismen offenzelliger Aluminiumschaum-Strukturen [PhD Thesis], Berlin University of Technology. http://dx.doi.org/10.14279/depositonce-5047CrossRefGoogle Scholar
Schuller, F., Hohlfeld, J. and Hipke, T. (2017), “Sandwich manufacturing with foam core and coversheets out of aluminium - A new process without rolling”, Presentation held at 10th International Conference on Porous Metals and Metallic Foams, MetFoam, Nanjing, China, September 15-17, 2017. http://publica.fraunhofer.de/eprints/urn_nbn_de_0011-n-4733025.pdfGoogle Scholar
Seeliger, H.-W. (2004), “Aluminium Foam Sandwich (AFS) Ready for Market Introduction”, Advanced Engineering Materials, Vol. 6 No. 6, pp. 448451. https://doi.org/10.1002/adem.200405140CrossRefGoogle Scholar
Seeliger, H.-W. (2011), “AFS-Weiterentwicklung erreicht Serienreife: Aluminiumschaum frisch vom Band”, Aluminium Kurier News, No. 03/2011, p. 16.Google Scholar
Sviridov, A. (2011), Leichtbau mit Aluminiumschaumsandwich Prozessketten zur Herstellung von Bauteilen [PhD Thesis], Brandenburg University of Technology Cottbus.Google Scholar