Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T21:46:07.779Z Has data issue: false hasContentIssue false

Additive manufacturing of individual bone implants made of bioresorbable calcium phosphate cement using the example of large skull defects

Published online by Cambridge University Press:  16 May 2024

Stefan Holtzhausen*
Affiliation:
Technische Universität Dresden, Germany
Philipp Sembdner
Affiliation:
Technische Universität Dresden, Germany
Martin Pendzik
Affiliation:
Technische Universität Dresden, Germany
Holger Wilhelm Rudolf Schmidt
Affiliation:
Technische Universität Dresden, Germany
Kristin Paetzold-Byhain
Affiliation:
Technische Universität Dresden, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the field of individualized medical implants for bone replacesment, additive manufacturing offers far-reaching advantages for bridging bone defects and supporting the production of natural form and function. The article uses the example of a large, customized cranial implant to show the challenges of manufacturing with osteoinductive bone cements. The process is shown, starting with planning and design, through to functional integration using adapted manufacturing strategies to create defined porosity.

Type
Design for Additive Manufacturing
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2024.

References

Ahlfeld, T., Akkineni, A.R., Förster, Y., Köhler, T., Knaack, S., Gelinsky, M. and Lode, A. (2017), “Design and Fabrication of Complex Scaffolds for Bone Defect Healing. Combined 3D Plotting of a Calcium Phosphate Cement and a Growth Factor-Loaded Hydrogel”, Annals of Biomedical Engineering, Vol. 45 No. 1, pp. 224236, https://dx.doi.org/10.1007/s10439-016-1685-4.CrossRefGoogle Scholar
Ahlfeld, T., Köhler, T., Czichy, C., Lode, A. and Gelinsky, M. (2018), “A Methylcellulose Hydrogel as Support for 3D Plotting of Complex Shaped Calcium Phosphate Scaffolds”, Gels (Basel, Switzerland), Vol. 4 No. 3, https://dx.doi.org/10.3390/gels4030068.Google ScholarPubMed
Bærentzen, A. and Aanæs, H. (2002), “Generating Signed Distance Fields From Triangle Meshes”.Google Scholar
Du Plessis, A., Broeckhoven, C., Yadroitsava, I., Yadroitsev, I., Hands, C.H., Kunju, R. and Bhate, D. (2019), “Beautiful and Functional: A Review of Biomimetic Design in Additive Manufacturing”, Additive Manufacturing, Vol. 27, pp. 408427, https://dx.doi.org/10.1016/j.addma.2019.03.033.CrossRefGoogle Scholar
Haleem, A., Javaid, M., Khan, R.H. and Suman, R. (2020), “3D printing applications in bone tissue engineering”, Journal of clinical orthopaedics and trauma, Vol. 11 No. Suppl 1, S118-S124, https://dx.doi.org/10.1016/j.jcot.2019.12.002.CrossRefGoogle ScholarPubMed
Heinemann, S., Rössler, S., Lemm, M., Ruhnow, M. and Nies, B. (2013), “Properties of injectable ready-to-use calcium phosphate cement based on water-immiscible liquid”, Acta biomaterialia, Vol. 9 No. 4, pp. 61996207, https://dx.doi.org/10.1016/j.actbio.2012.12.017.CrossRefGoogle ScholarPubMed
Hendrikson, W.J., Deegan, A.J., Yang, Y., van Blitterswijk, C.A., Verdonschot, N., Moroni, L. and Rouwkema, J. (2017), “Influence of Additive Manufactured Scaffold Architecture on the Distribution of Surface Strains and Fluid Flow Shear Stresses and Expected Osteochondral Cell Differentiation”, Frontiers in bioengineering and biotechnology, Vol. 5, p. 6, https://dx.doi.org/10.3389/fbioe.2017.00006.CrossRefGoogle ScholarPubMed
Hofmann, D., Sembdner, P., Holtzhausen, S. and Stelzer, R. (2018), “Approach for using ct data in product development processes”, The e-Journal of Nondestructive Testing, Vol. 23 No.02.Google Scholar
Holtzhausen, S., Heinemann, S., Lemm, M. and Stelzer, R. (2019), “Printing of contour-adapted bone scaffolds based on calcium phosphate cements”, CARS 2019, https://dx.doi.org/10.1007/s11548-019-01969-3.Google Scholar
Holtzhausen, S., Kilian, D., Sembdner, P., Lode, A., Gelinsky, M. and Stelzer, R. (2020), “Adjustment of locally resolved pore sizes for extrusion printing of biomaterials”, DDMC2020 - Fraunhofer Direct Digital Manufacturing Conference, 2020.Google Scholar
ISO/ASTM 52900, Additive manufacturing - General principles - Fundamentals and vocabulary, 2021st ed., International Organization for Standardization, Geneve.Google Scholar
Kilian, D., Sembdner, P., Bretschneider, H., Ahlfeld, T., Mika, L., Lützner, J., Holtzhausen, S., Lode, A., Stelzer, R. and Gelinsky, M. (2021), “3D printing of patient-specific implants for osteochondral defects: workflow for an MRI-guided zonal design”, Bio-Design and Manufacturing, https://dx.doi.org/10.1007/s42242-021-00153-4.CrossRefGoogle Scholar
Kinne, R.W., Gunnella, F., Kunisch, E., Heinemann, S., Nies, B., Maenz, S., Horbert, V., Illerhaus, B., Huber, R., Firkowska-Boden, I., Bossert, J., Jandt, K.D., Sachse, A., Bungartz, M. and Brinkmann, O. (2021), “Performance of Calcium Phosphate Cements in the Augmentation of Sheep Vertebrae-An Ex Vivo Study”, Materials (Basel, Switzerland), Vol. 14 No. 14, https://dx.doi.org/10.3390/ma14143873.Google ScholarPubMed
Korn, P., Ahlfeld, T., Lahmeyer, F., Kilian, D., Sembdner, P., Stelzer, R., Pradel, W., Franke, A., Rauner, M., Range, U., Stadlinger, B., Lode, A., Lauer, G. and Gelinsky, M. (2020), “3D Printing of Bone Grafts for Cleft Alveolar Osteoplasty - In vivo Evaluation in a Preclinical Model”, Frontiers in bioengineering and biotechnology, Vol. 8, p. 217, https://dx.doi.org/10.3389/fbioe.2020.00217.CrossRefGoogle Scholar
Lindner, M., Bergmann, C., Telle, R. and Fischer, H. (2014), “Calcium phosphate scaffolds mimicking the gradient architecture of native long bones”, Journal of biomedical materials research. Part A, Vol. 102 No. 10, pp. 36773684, https://dx.doi.org/10.1002/jbm.a.35038.CrossRefGoogle ScholarPubMed
Muallah, D., Sembdner, P., Holtzhausen, S., Meissner, H., Hutsky, A., Ellmann, D., Assmann, A., Schulz, M.C., Lauer, G. and Kroschwald, L.M. (2021), “Adapting the Pore Size of Individual, 3D-Printed CPC Scaffolds in Maxillofacial Surgery”, Journal of Clinical Medicine, Vol. 10 No. 12, https://dx.doi.org/10.3390/jcm10122654.CrossRefGoogle ScholarPubMed
Pendzik, M., Holtzhausen, S., Heinemann, S. and Paetzold, K. (2023), “FURTHER DEVELOPMENT OF THE DESIGN PROCESS FOR HYBRID INDIVIDUAL IMPLANTS”, Proceedings of the Design Society, Vol. 3, pp. 20352044, https://dx.doi.org/10.1017/pds.2023.204.CrossRefGoogle Scholar
Pendzik, M., Mika, L., Scheibner, B., Holtzhausen, S. and Stelzer, R. (2021), “Development of a process for designing hybrid implants for production using additive manufacturing”, Proceedings of the 32nd Symposium Design for X, DFX 2021, https://dx.doi.org/10.35199/dfx2021.18.CrossRefGoogle Scholar
Reitmaier, S., Kovtun, A., Schuelke, J., Kanter, B., Lemm, M., Hoess, A., Heinemann, S., Nies, B. and Ignatius, A. (2018), “Strontium(II) and mechanical loading additively augment bone formation in calcium phosphate scaffolds”, Journal of orthopaedic research official publication of the Orthopaedic Research Society, Vol. 36 No. 1, pp. 106117, https://dx.doi.org/10.1002/jor.23623.CrossRefGoogle ScholarPubMed
Schulz, M.C., Holtzhausen, S., Nies, B., Heinemann, S., Muallah, D., Kroschwald, L., Paetzold-Byhain, K., Lauer, G. and Sembdner, P. (2023), “Three-Dimensional Plotted Calcium Phosphate Scaffolds for Bone Defect Augmentation—A New Method for Regeneration”, Journal of personalized medicine, Vol. 13 No. 3, p. 464, https://dx.doi.org/10.3390/jpm13030464.CrossRefGoogle ScholarPubMed
Seidler, A., Pendzik, M., Hilbig, A., Sembdner, P., Holtzhausen, S. and Paetzold-Byhain, K. (2023), “Investigation of manufacturing deviations of CPC scaffolds for improving the design process”, Current Directions in Biomedical Engineering, Vol. 9 No. 1, pp. 551554, https://dx.doi.org/10.1515/cdbme-2023-1138.CrossRefGoogle Scholar
Sembdner, P., Pohlmann, H., Wendler, A., Matschke, J.B., Kroschwald, L., Holtzhausen, S., Hutsky, A., Ellmann, D., Lauer, G. and Paetzold, K. (2023), “Approach for Rapid Fabrication of Individual Bone Replacement Structures by Designing Additively Prefabricated CPC Models”, Lachmayer, Bode et al. (Hg.) 2023 – Innovative Product Development by Additive Manufacturing, Vol. 2023, pp. 6075, https://dx.doi.org/10.1007/978-3-031-27261-5_5.Google Scholar
Xu, H., Wang, P., Wang, L., Bao, C., Chen, Q., Weir, M.D., Chow, L.C., Zhao, L., Zhou, X. and Reynolds, M.A. (2017), “Calcium phosphate cements for bone engineering and their biological properties”, Bone Research, Vol. 5, https://dx.doi.org/10.1038/boneres.2017.56.CrossRefGoogle ScholarPubMed