Article contents
An AI-Based Approach to Optimize Stress in Shrink Fits
Published online by Cambridge University Press: 26 May 2022
Abstract
The present analytical design of shrink fits typically results in an uneven stress condition that can lead to failure in a variety of manners. With increasing loads and the use of brittle materials, the optimization of the stresses in the shrink fit hence becomes increasingly necessary. Currently existing approaches do not solve the problem satisfactorily or increase the manufacturing and design effort. This paper therefore considers the implementation of an AI-based stress optimization using reinforcement learning, which performs stress optimization by geometrically contouring the interstice.
Keywords
- Type
- Article
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
- Copyright
- The Author(s), 2022.
References
- 1
- Cited by