Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T11:02:48.182Z Has data issue: false hasContentIssue false

Computing solution spaces for gear box design

Published online by Cambridge University Press:  16 May 2024

Klara Ziegler*
Affiliation:
Technical University of Munich, Germany
Kutay Demir
Affiliation:
Technical University of Munich, Germany
Thomas Luft
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
Thomas Mucks
Affiliation:
J.M. Voith SE & Co. KG | VTA, Germany
Marius Fürst
Affiliation:
Technical University of Munich, Germany
Michael Otto
Affiliation:
Technical University of Munich, Germany
Karsten Stahl
Affiliation:
Technical University of Munich, Germany
Birgit Vogel-Heuser
Affiliation:
Technical University of Munich, Germany
Markus Zimmermann
Affiliation:
Technical University of Munich, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The design of gear boxes is a complex challenge characterized by conflicting requirements and seemingly circular dependencies. Existing tools support engineers but focus on a single predefined design, often leading to costly iterative processes and non-optimal solutions. Solution Space Engineering (SSE) alleviates this by generating multiple designs represented by solution spaces. For this, a particular model structure is needed, and thus restructuring existing models, e.g., from industry standards. The application of solution spaces to a two-stage gear box is presented.

Type
Engineering Design Practice
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2024.

References

AGMA 2001-D4:2004-12, “Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth.”.Google Scholar
ECLASS e.V., “ECLASS”, available at: https://eclass.eu/ (accessed 21 November 2023).Google Scholar
Fürst, M., Götz, J., Otto, M. and Stahl, K. (2022), “Automation of gearbox design”, Forschung im Ingenieurwesen, Vol. 86 No. 3, pp. 409420. http://dx.doi.org/10.1007/s10010-021-00517-3CrossRefGoogle Scholar
Fürst, M., Otto, M., Stahl, K. (2023), “Erweiterung des Getriebeauslegungsprogramms GAP (mit REXS-Schnittstellenimplementierung)”, FVA-Nr. 421 V - Heft 1591, Forschungsvereinigung Antriebstechnik e.V.Google Scholar
GmbH, FVA (2017), “REXS”, available at: https://www.rexs.info/ (accessed 21 November 2023).Google Scholar
Software, FVA & GmbH, Service. (2023), “FVA-Workbench.”.Google Scholar
Gärtner, P. and Herrwig, D. (1974), “Beitrag zur Projektierung leichter Zahnradgroßgetriebe”, Dissertation. Bergakademie Freiberg.Google Scholar
Höhn, B.-R., Heider, M., Stahl, K., Otto, M. and Bihr, J. (2011), “Assessment of the Vibration Excitation and Optimization of Cylindrical Gears”, in Volume 8: 11th International Power Transmission and Gearing Conference, Washington, DC, USA, ASMEDC, http://dx.doi.org/10.1115/DETC2011-47443Google Scholar
ISO 6336:2006-09, “Calculation of load capacity of spur and helical gears”.Google Scholar
ISO/TR 14179-1:2001-07, “Gears – Thermal capacity – Part 1: Rating gear drives with thermal equilibrium at 95◦C sump temperature.”.Google Scholar
ISO/TR 14179-2:2001-08, “Gears – Thermal capacity – Part 2: Thermal load-carrying capacity”.Google Scholar
Kanarachos, A., Moulantzikos, G. and Zalimidis, P. (1987), “Auslegung volumenminimaler Stirnradgetriebe”, In: Konstruktion 39.11, pp. 431438.Google Scholar
KISSsoft AG (2023a), “KISSsoft Elements”.Google Scholar
KISSsoft AG (2023b), “KISSsys Elements”.Google Scholar
Kohn, B., Utakapan, T., Fromberger, M., Otto, M. and Stahl, K. (2017), “Flank modifications for optimal excitation behaviour”, in International Conference on Gears, VDI Verlag, http://dx.doi.org/10.51202/9783181022948-1319Google Scholar
Luft, T. (2022), “Komplexitätsmanagement in der Produktentwicklung - Holistische Modellierung, Analyse, Visualisierung und Bewertung komplexer Systeme”, FAU Studien aus dem Maschinenbau Band 396. Erlangen: FAU University Press. http://dx.doi.org/10.25593/978-3-96147-541-4CrossRefGoogle Scholar
Luft, T., Krehmer, H. and Wartzack, S. (2013), “An advanced procedure model for property-based product development”, Proceedings of the 19th International Conference on Engineering Design (ICED13), Vol.9Google Scholar
Vertriebs GmbH, MDESIGN. (2023), “MDESIGN gearbox: Complete gearboxes in ”one“ gear.”.Google Scholar
Moeser, H. (1982), “Übersetzungsaufteilung bei mehrstufigen Getrieben”, In: Maschinenbautechnik 31.4Google Scholar
Niemann, G. and Winter, H. (2003), Getriebe allgemein, Zahnradgetriebe - Grundlagen, Stirnradgetriebe, Bd. 2, Springer Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-662-11873-3CrossRefGoogle Scholar
Parlow, J. and Otto, M. (2016), “Erweiterung Getriebeauslegungsprogramm IV: FVA 421 IV”, Heft 1199.Google Scholar
Parlow, J., Otto, M. and Stahl, K. (2016), “Vom Lastenheft zur Verzahnung – anwendungsflexible Dimensionierung von Zahnradgetrieben mittels expliziten Entwurfsmodells/From Specification to Gearing – Application Specific Gear Box Design Using an Explicit Design Model”, In: Konstruktion 68.03, pp. 6469.CrossRefGoogle Scholar
Parlow, J.C. (2016), “Entwicklung einer Methode zum anforderungsgerechten Entwurf von Stirnradgetrieben”, PhD thesis. Technische Universität München.Google Scholar
Limited, Romax Technology. (2023), “Romax.”.Google Scholar
Römhild, I. (1993), “Auslegung mehrstufiger Stirnradgetriebe - Übersetzungsaufteilung für minimale Masse und Wahl der Profilverschiebung auf der Basis neuer Berechnungsgrundlagen”, Dissertation. TU Dresden.Google Scholar
Rothemund, M. and Otto, M. (2023), “Geometrie und Fertigung in der Verzahnungsberechnung - Ableitung fertigungsgerechter Geometrien, Darstellungen und Schnittstellen für die moderne Zahnradherstellung: FVA 241 XVI”, Heft 1574.Google Scholar
Rötzer, S., Rostan, N., Steger, H.C., Vogel-Heuser, B. and Zimmermann, M. (2020a), “Sequencing of Information in Modular Model-based Systems Design”, p. 10. http://dx.doi.org/10.35199/dsm2020.7CrossRefGoogle Scholar
Rötzer, S., Thoma, D. and Zimmermann, M. (2020b), “COST OPTIMIZATION OF PRODUCT FAMILIES USING SOLUTION SPACES”, Proceedings of the Design Society, Vol. 1, http://dx.doi.org/10.1017/dsd.2020.178Google Scholar
Sathuluri, A., Sureshbabu, A.V. and Zimmermann, M. (2023), “Robust co-design of robots via cascaded optimisation”, in 2023 IEEE ICRA, London, United Kingdom, http://dx.doi.org/10.1109/ICRA48891.2023.10161134CrossRefGoogle Scholar
Savsani, V., Rao, R.V. and Vakharia, D.P. (2010), “Optimal weight design of a gear train using particle swarm optimization and simulated annealing algorithms”, Mechanism and Machine Theory, Vol. 45 No. 3, pp. 531541. http://dx.doi.org/10.1016/j.mechmachtheory.2009.10.010CrossRefGoogle Scholar
Sendlbeck, S., Maurer, M., Otto, M. and Stahl, K. (2023), “Potentials and challenges in enhancing the gear transmission development with machine learning methods—a review”, Forschung im Ingenieurwesen, Vol. 87 No. 4, pp. 13331346. http://dx.doi.org/10.1007/s10010-023-00699-yCrossRefGoogle Scholar
Smart Manufacturing Technology Ltd., “MASTA: Gearbox and driveline design, analysis and optimisation.”.Google Scholar
Stumpf, J., Naumann, T., Vogt, M.E., Duddeck, F. and Zimmermann, M. (2020), “On the Treatment of Equality Constraints in Mechanical Systems Design Subject to Uncertainty”, NordDesign 2020, Denmark. http://dx.doi.org/10.35199/NORDDESIGN2020.24Google Scholar
VDI/VDE 2206 (2021), “Development of mechatronic and cyber-physical systems.”.Google Scholar
Xu, D., Zhang, Y. and Zimmermann, M. (2023), “Design of Vibrating Systems Using Solution Spaces”, Machines, Vol. 11 No. 6, p. 642. http://dx.doi.org/10.3390/machines11060642.CrossRefGoogle Scholar
Ziegler, K., Volpert, M., Amm, M., Vogel-Heuser, B., Stahl, K. and Zimmermann, M. (2023), “MBSE INCORPORATING TIME-DEPENDENT BEHAVIOR FOR THE DESIGN OF ROBOT-LIKE SYSTEMS”, Proceedings of the Design Society, Vol. 3, pp. 25852594. http://dx.doi.org/10.1017/pds.2023.259CrossRefGoogle Scholar
Zimmermann, M. and Hoessle, J.E. von (2013), “Computing solution spaces for robust design”, International Journal for Numerical Methods in Engineering, Vol. 94 No. 3, pp. 290307. http://dx.doi.org/10.1002/nme.4450CrossRefGoogle Scholar
Zimmermann, M., Königs, S., Niemeyer, C., Fender, J., Zeherbauer, C., Vitale, R. and Wahle, M. (2017), “On the design of large systems subject to uncertainty”, Journal of Engineering Design, Vol.28 No. 4, pp. 233254. http://dx.doi.org/10.1080/09544828.2017.1303664CrossRefGoogle Scholar
Zimmermann, M. and Weck, O. de (Eds.) (2023), Formulating Engineering Systems Requirements, Springer International Publishing; Imprint Springer, Cham. http://dx.doi.org/10.1007/978-3-030-46054-9.CrossRefGoogle Scholar