Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T22:37:54.533Z Has data issue: false hasContentIssue false

Coping Asynchronous Modular Product Design by Modelling a Systems-in-System

Published online by Cambridge University Press:  26 May 2022

M. Zuefle*
Affiliation:
Hamburg University of Technology, Germany TRUMPF GmbH + Co. KG, Germany
S. Muschik
Affiliation:
TRUMPF GmbH + Co. KG, Germany
N. Bursac
Affiliation:
TRUMPF GmbH + Co. KG, Germany
D. Krause
Affiliation:
Hamburg University of Technology, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper analyzes the potential of crossdisciplinary collaboration in the methodical development of Modular Design by harmonization asynchronous mechatronic system structures. Subsystem boundaries in multidisciplinary development processes are set disciplinespecific, resulting in inconsistencies in module fitting. Based on a case study, harmonization of disciplines is elaborated as a solution. This aligns discipline structures and reduces effects on the variety in system structures.This implementation shows support for modular design and enables an integrated view as a systems-in-system.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2022.

References

Abramovici, M., Göbel, J.C. and Savarino, P. (2017), “Reconfiguration of smart products during their use phase based on virtual product twins”, CIRP Annals, Vol. 66 No. 1, pp. 165168. 10.1016/j.cirp.2017.04.042.Google Scholar
Albers, A., Peglow, N., Powelske, J., Birk, C. and Bursac, N. (2018), “Coping with Complex Systems-of-Systems in the Context of PGE – Product Generation Engineering”, Procedia CIRP, Vol. 70, pp. 457462. 10.1016/j.procir.2018.01.004.Google Scholar
Birk, C., Zuefle, M., Albers, A., Bursac, N. and Krause, D. (2021), “INTERDISCIPLINARY SYSTEM ARCHITECTURES IN AGILE MODULAR DEVELOPMENT IN THE PRODUCT GENERATION DEVELOPMENT MODEL USING THE EXAMPLE OF A MACHINE TOOL MANUFACTURER”, Proceedings of the Design Society, Vol. 1, pp. 18971906. 10.1017/pds.2021.451.Google Scholar
Blees, C., Jonas, H. and Krause, D. (2010), “Development of Modular Product Families”, in Wynn, D.C. (Ed.), Managing complexity by modelling dependencies: Proceedings of the 12th International DSM Conference Cambridge, UK, 22 - 23 July 2010, 22.-23.07.2010, Cambridge, Hanser, München, pp. 169182.Google Scholar
Campusano, M., Jensen, K. and Schultz, U.P. (2021), “Towards a Service-Oriented U-Space Architecture for Autonomous Drone Operations”, in 2021 IEEE/ACM 3rd International Workshop on Robotics Software Engineering (RoSE), 02.06.2021 - 02.06.2021, Madrid, Spain, IEEE, pp. 6366. 10.1109/RoSE52553.2021.00017.Google Scholar
Eigner, M., Dickopf, T., Apostolov, H., Schaefer, P., Faißt, K.-G. and Keßler, A. (2014), “System Lifecycle Management: Initial Approach for a Sustainable Product Development Process Based on Methods of Model Based Systems Engineering”, in Fukuda, S., Bernard, A., Gurumoorthy, B. and Bouras, A. (Eds.), Product Lifecycle Management for a Global Market, IFIP Advances in Information and Communication Technology, Vol. 442, Springer Berlin Heidelberg, Berlin, HeidelbergCugnoCugnoCugnoCugnoCugnoCugno, pp. 287300. 10.1007/978-3-662-45937-9_29.Google Scholar
Erixon, G. (1998), Modular function deployment: A method for product modularisation, Zugl.: Stockholm, Kungl. Tekn. Högsk., Diss., 1998, TRITA-MSM, Vol. 98, 1, The Royal Inst. of Technology Dept. of Manufacturing Systems Assembly Systems Division, Stockholm.Google Scholar
Friedl, M., Scheidl, R., Hehenberger, P., Kellner, A., Weingartner, L. and Hörl, M. (2016), “A DESIGN OPTIMIZATION FRAMEWORK FOR MULTIDISCIPLINARY MECHATRONIC SYSTEMS”.Google Scholar
Gauss, L., Lacerda, D.P. and Cauchick Miguel, P.A. (2022), “Market-Driven Modularity: Design method developed under a Design Science paradigm”, International Journal of Production Economics, Vol. 246. 10.1016/j.ijpe.2022.108412.CrossRefGoogle Scholar
Graessler, I., Hentze, J. and Bruckmann, T. (2018), “V-MODELS FOR INTERDISCIPLINARY SYSTEMS ENGINEERING”, in Proceedings of the DESIGN 2018 15th International Design Conference, May, 21-24, 2018, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia; The Design Society, Glasgow, UK, pp. 747756. 10.21278/idc.2018.0333.Google Scholar
Greve, E., Rennpferdt, C. and Krause, D. (2020), “Harmonizing cross-departmental Perspectives on Modular Product Families”, Procedia CIRP, Vol. 91, pp. 452457. 10.1016/j.procir.2020.02.198.Google Scholar
Hansen, P.K., Persson, M., Hsuan, J. and Andersen, A.-L., Andersen, R., Brunoe, T.D., Larsen, M.S.S., Nielsen, K., Napoleone, A., Kjeldgaard, S. (2022), “Benefits of Modularity Strategies - Implications of Decisions and Timing”, Lecture Notes in Mechanical Engineering, pp. 879886. 10.1007/978-3-030-90700-6_100.Google Scholar
Hehenberger, P. and Zeman, K. (2005), “Evaluation of Modular Design Concepts of Complex Mechatronic Systems”, in Volume 2: 31st Design Automation Conference, Parts A and B, 24.09.2005 - 28.09.2005, Long Beach, California, USA, ASMEDC, pp. 101108. 10.1115/DETC2005-84414.Google Scholar
Kipp, T., Blees, C. and Krause, D. (2010), “Anwendung einer integrierten Methode zur Entwicklung modularer Produktfamilien”.Google Scholar
Krause, D., Beckmann, G., Eilmus, S., Gebhardt, N., Jonas, H. and Rettberg, R. (2014), “Integrated Development of Modular Product Families: A Methods Toolkit”, in Simpson, T.W., Jiao, J., Siddique, Z. and Hölttä-Otto, K. (Eds.), Advances in Product Family and Product Platform Design: Methods & applications, Advances in Product Family and Product Platform Design, Springer New York, New York, NY, pp. 245269. 10.1007/978-1-4614-7937-6_10.Google Scholar
Krause, D. and Gebhardt, N. (2018), “Methoden zur Entwicklung modularer Produktfamilien”, in Krause, D. and Gebhardt, N. (Eds.), Methodische Entwicklung modularer Produktfamilien, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 157242. 10.1007/978-3-662-53040-5_6.Google Scholar
Krause, D., Vietor, T., Inkermann, D., Hanna, M., Richter, T. and Wortmann, N. (2021), “Produktarchitektur”, in Bender, B. and Gericke, K. (Eds.), Pahl/Beitz Konstruktionslehre, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 335393. 10.1007/978-3-662-57303-7_12.CrossRefGoogle Scholar
Kuhl, J., Ding, A., Ngo, N.T., Braschkat, A., Fiehler, J. and Krause, D. (2021), “Design of Personalized Devices—The Tradeoff between Individual Value and Personalization Workload”, Applied Sciences, Vol. 11 No. 1, p. 241. 10.3390/app11010241.CrossRefGoogle Scholar
Liu, H., Tao, Y., Huang, W. and Lin, H. (2021), “Visual exploration of dependency graph in source code via embedding-based similarity”, Journal of Visualization, Vol. 24 No. 3, pp. 565581. 10.1007/s12650-020-00727-x.CrossRefGoogle Scholar
Mcharek, M., Azib, T., Larouci, C. and Hammadi, M. (2019), “Collaboration and multidisciplinary design optimization for mechatronic systems”, IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, Vol. 1, pp. 624629.Google Scholar
Mensing, B. and Schaefer, I. (2015), “A methodology for hierarchical multidisciplinary modeling and analysis of mechatronic systems”, Tagungsband - Dagstuhl-Workshop MBEES 2015: Modellbasierte Entwicklung Eingebetteter Systeme XI.Google Scholar
Morgan, M., Holzer, T. and Eveleigh, T. (2021), “Synergizing model-based systems engineering, modularity, and software container concepts to manage obsolescence”, Systems Engineering, Vol. 24 No. 5, pp. 369380. 10.1002/sys.21591.CrossRefGoogle Scholar
Pérez-Rodriguez, R., Molina, A., Miranda, J., Borja, V. and Wright, P.K. (2018), “The requirements specification of mechatronic products based-on the Integrated product, process and manufacturing development model”, Ingeniería Mecánica, No. Vol. 21 No. 3, pp. 145152.Google Scholar
Pimmler, T.U. and Eppinger, S. (1994), “Integration analysis of product decompositions”.Google Scholar
Rennpferdt, C. and Krause, D. (2020), “Towards a Framework for the Design of variety-oriented Product-Service Systems”, Proceedings of the Design Society: DESIGN Conference, Vol. 1, pp. 13451354. 10.1017/dsd.2020.108.Google Scholar
Seiler, F.M., Greve, E. and Krause, D. (2019), “Development of a Configure-to-Order-Based Process for the Implementation of Modular Product Architectures: A Case Study”, Proceedings of the Design Society: International Conference on Engineering Design, Vol. 1 No. 1, pp. 29712980. 10.1017/dsi.2019.304.Google Scholar
Simpson, T.W., Bobuk, A., Slingerland, L.A., Brennan, S., Logan, D. and Reichard, K. (2012), “From user requirements to commonality specifications: an integrated approach to product family design”, Research in Engineering Design, Vol. 23 No. 2, pp. 141153. 10.1007/s00163-011-0119-4.CrossRefGoogle Scholar
Skogstad, M., Brunoe, T.D., Nielsen, K., Andersen, A.-L. and Andersen, A.-L., Andersen, R., Brunoe, T.D., Larsen, M.S.S., Nielsen, K., Napoleone, A., Kjeldgaard, S. (2022), “Product Architecture Mining: Identifying Current Architectural Solutions”, Lecture Notes in Mechanical Engineering, pp. 694701. 10.1007/978-3-030-90700-6_79.Google Scholar
Stone, R.B. (1997), “Towards a Theory of Modular Design”, Dissertation, The University of Texas, Austin, TX, USA, 1997.Google Scholar
Thramboulidis, K. (2005), “Model-Integrated Mechatronics—Toward a New Paradigm in the Development of Manufacturing Systems”, IEEE Transactions on Industrial Informatics, Vol. 1 No. 1, pp. 5461. 10.1109/TII.2005.844427.CrossRefGoogle Scholar
Tomiyama, T., Lutters, E., Stark, R. and Abramovici, M. (2019), “Development capabilities for smart products”, CIRP Annals, Vol. 68 No. 2, pp. 727750. 10.1016/j.cirp.2019.05.010.CrossRefGoogle Scholar
Vasić, V. and Lazarević, M. (2008), “Standard Industrial Guideline for Mechatronic Product Design”, FME Transactions, Vol. 36.Google Scholar
Walden, D.D., Roedler, G.J., Forsberg, K., Hamelin, R.D. and Shortell, T.M. (Eds.) (2015), Systems engineering handbook: A guide for system life cycle processes and activities; INCOSE-TP-2003-002-04, 2015, 4. edition, Wiley, Hoboken, NJ.Google Scholar
Wynn, D.C. (Ed.) (2010), Managing complexity by modelling dependencies: Proceedings of the 12th International DSM Conference Cambridge, UK, 22 - 23 July 2010, Hanser, München.Google Scholar
You, Z.-H. and Smith, S. (2016), “A multi-objective modular design method for creating highly distinct independent modules”, Research in Engineering Design, Vol. 27 No. 2, pp. 179191. 10.1007/s00163-016-0213-8.Google Scholar
Zuefle, M., Dambietz, F.M. and Krause, D. (2021a), “Necessity of a multi-dimensional approach in the development of modular product families”, 43rd R&D Management Conference - Innovation in an Era of Disruption; Glasgow, UK. 10.5281/zenodo.6226274.Google Scholar
Zuefle, M., Rennpferdt, C. and Krause, D. (2021b), “Cross-departmental and cross-disciplinary product development – An industry survey on the necessity and future development of cross-departmental and cross-disciplinary perspectives”, Procedia CIRP, Vol. 100, pp. 625630. 10.1016/j.procir.2021.05.147.CrossRefGoogle Scholar