Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T12:03:26.288Z Has data issue: false hasContentIssue false

GUIDELINES FROM LITERATURE TO PRACTICE: FIRST KEY TO IMPLEMENT ECO-INNOVATION IN AN INNOVATION LABORATORY

Published online by Cambridge University Press:  19 June 2023

Lili Coustillac*
Affiliation:
Forvia Clean Mobility, France; Université Bourgogne Franche-Comté, France; Université de Technologie de Compiègne, France;
Florence Bazzaro
Affiliation:
Université Bourgogne Franche-Comté, France;
Yann Meyer
Affiliation:
Université de Technologie de Compiègne, France; Université Savoie Mont Blanc, France
Justine Lobbé
Affiliation:
Forvia Clean Mobility, France;
Patrick Guillaud-Vallée
Affiliation:
Forvia Clean Mobility, France;
*
Coustillac, Lili, Forvia Clean Mobility, France, lili.coustillac@forvia.com

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Today, eco-innovation is a major challenge for companies. This new innovation approach requires to renew current practices to meet new societal and environmental issues. To do this, more and more companies create innovation laboratories to support them in this process, by providing different tools and methods adapted to their needs. To integrate eco-innovation in these new spaces, tools must answer to differents criteria. The only tool proposed by the literature is the guidelines tool but by confronting it with current practices, limits of this tool and of the innovation laboratory practices were defined. In this paper we will question and deconstruct guidelines tool in order to propose a new vision of it through identification of eco-innovation attributes.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2023. Published by Cambridge University Press

References

AFNOR (1998) ‘FD X30-310 - Prise en compte de l'environnement dans la conception des produits — Principes généraux et application’. AFNOR Editions.Google Scholar
AFNOR (2002) ‘ISO/TR 14062 - Management environnemental - Intégration des aspects environnementaux dans la conception et le développement de produit’. AFNOR Editions.Google Scholar
AFNOR (2006) ‘NF EN ISO 14040 - Management environnemental - Analyse du cycle de vie - Principes et cadre’.Google Scholar
AFNOR (2013) ‘NF X30-264 - Management environnemental - Aide à la mise en place d'une démarche d’éco-conception’.Google Scholar
Anderson, C. (2017) Makers: La nouvelle révolution industrielle. Pearson.Google Scholar
Baregheh, A., Rowley, J. and Sambrook, S. (2009) ‘Towards a multidisciplinary definition of innovation’, Management Decision, 47(8), pp. 13231339. Available at: https://doi.org/10.1108/00251740910984578.CrossRefGoogle Scholar
Bellini, B. and Janin, M. (2019) Écoconception : état de l'art des outils disponibles: Dossier complet | Techniques de l'Ingénieur, Techniques de l'ingénieur.CrossRefGoogle Scholar
Bosqué, C. (2016) La fabrication numérique personnelle, pratiques et discours d'un design diffus: enquête au coeur des FabLabs, hackerspaces et makerspaces de 2012 à 2015. Thèse de doctorat. Rennes 2.Google Scholar
Bovea, M.D. and Pérez-Belis, V. (2012) ‘A taxonomy of ecodesign tools for integrating environmental requirements into the product design process’, Journal of Cleaner Production, 20(1), pp. 6171. Available at: https://doi.org/10.1016/j.jclepro.2011.07.012.CrossRefGoogle Scholar
Bovea, M.D. and Pérez-Belis, V. (2018) ‘Identifying design guidelines to meet the circular economy principles: A case study on electric and electronic equipment’, Journal of Environmental Management, 228, pp. 483494. Available at: https://doi.org/10.1016/j.jenvman.2018.08.014.CrossRefGoogle ScholarPubMed
Brezet, H. (1997) ‘Dynamics in ecodesign practice’, INDUSTRY AND ENVIRONMENT-PARIS-, 20, pp. 2124.Google Scholar
Brezet, H. and Van Hemel, C. (1997) Ecodesign: a promising approach to sustainable production and consumption. 1. ed. UNEP (United Nations publication).Google Scholar
Briggs, R.O. and Reinig, B.A. (2007) ‘Bounded Ideation Theory: A New Model of the Relationship Between Idea-quantity and Idea-Quality during Ideation’, in Proceedings of the 40th Annual Hawaii International Conference on System Sciences. USA: IEEE Computer Society (HICSS ’07), p. 16. Available at: https://doi.org/10.1109/HICSS.2007.108.CrossRefGoogle Scholar
Cluzel, F. (2011) ‘Eco-innover rapidement grâce à la roue de la stratégie d’éco-conception de Brezet’, in Yannou, F.R. B. (ed.) Déployer l'innovation - Méthodes, outils, pilotage et cas d’étude. Techniques de l'Ingénieur (Les Fiches Pratiques - Génie Industriel), pp. 393401. Available at: https://hal.archives-ouvertes.fr/hal-00797029 (Accessed: 16 July 2021).CrossRefGoogle Scholar
Cook, D.J., Metcalf, H.E. and Bailey, B.P. (2005) ‘SCWID: A tool for supporting creative work in design’.Google Scholar
Duarte, F. et al. (2019) ‘Innovative Labs and Co-design’. Available at: https://doi.org/10.1007/978-3-319-96071-5_206.CrossRefGoogle Scholar
Fussler, C. and James, P. (1996) Driving Eco-innovation: A Breakthrough Discipline for Innovation and Sustainability. Pitman Publishing.Google Scholar
Garcia, J. (2015) Développement d'une méthode d’évaluation de la performance environnementale des innovations incrémentales. Thèse de doctorat. Ecole centrale de Paris.Google Scholar
Go, T.F., Wahab, D.A. and Hishamuddin, H. (2015) ‘Multiple generation life-cycles for product sustainability: the way forward’, Journal of Cleaner Production, 95, pp. 1629. Available at: https://doi.org/10.1016/j.jclepro.2015.02.065.CrossRefGoogle Scholar
Guilloux, G. (2009) Ecodesign, du contexte au produit: contribution méthodologique à l'intégration de l'environnement dans les métiers du design industriel. Thèse de doctorat. Saint-Etienne, EMSE.Google Scholar
van Hemel, C. and Cramer, J. (2002) ‘Barriers and stimuli for ecodesign in SMEs’, Journal of Cleaner Production, 10(5), pp. 439453. Available at: https://doi.org/10.1016/S0959-6526(02)00013-6.CrossRefGoogle Scholar
Herrmann, I.T. and Moltesen, A. (2015) ‘Does it matter which Life Cycle Assessment (LCA) tool you choose? – a comparative assessment of SimaPro and GaBi’, Journal of Cleaner Production, 86, pp. 163169. Available at: https://doi.org/10.1016/j.jclepro.2014.08.004.CrossRefGoogle Scholar
Hewett, T., Czerwinski, M. and Terry, M.A. (2005) ‘Creativity Support Tool Evaluation Methods and Metrics’, in.Google Scholar
Issa, I. and Pigosso, D. (2013) Product-related Environmental Performance Indicators: a systematic literature review. Korea National Cleaner Production Center.Google Scholar
Issa, I.I. et al. (2015) ‘Leading product-related environmental performance indicators: a selection guide and database’, Journal of Cleaner Production, 108, pp. 321330. Available at: https://doi.org/10.1016/j.jclepro.2015.06.088.CrossRefGoogle Scholar
Jones, E., Stanton, N.A. and Harrison, D. (2001) ‘Applying structured methods to Eco-innovation. An evaluation of the Product Ideas Tree diagram’, Design Studies, 22(6), pp. 519542. Available at: https://doi.org/10.1016/S0142-694X(01)00007-2.CrossRefGoogle Scholar
Kemp, R. and Pearson, P. (2008) MEI project about Measuring Eco-Innovation. Final report. Netherlands, p. 122. Available at: http://www.merit.unu.edu/MEI/index.php (Accessed: 26 August 2022).Google Scholar
Laborde, O. (2017) Innover ou disparaître: Le lab pour remettre l'innovation au coeur de l'entreprise. Dunod.CrossRefGoogle Scholar
Lallement, M. (2015) L’âge du faire: hacking, travail, anarchie. Seuil.Google Scholar
Maccioni, L., Borgianni, Y. and Pigosso, D.C.A. (2019) ‘Can the choice of eco-design principles affect products’ success?’, Design Science, 5. Available at: https://doi.org/10.1017/dsj.2019.24.CrossRefGoogle Scholar
Magadley, W. and Birdi, K. (2009) ‘Innovation Labs: An Examination into the Use of Physical Spaces to Enhance Organizational Creativity’, Creativity and Innovation Management, 18, pp. 315325. Available at: https://doi.org/10.1111/j.1467-8691.2009.00540.x.CrossRefGoogle Scholar
Merindol, V. et al. (2016) Le livre blanc des open labs: Quelles pratiques? Quels changements en France. Available at: https://doi.org/10.13140/RG.2.2.27107.96806.CrossRefGoogle Scholar
Metz, P. et al. (2016) ‘The Path to Sustainability-Driven Innovation’, Research-Technology Management, 59(3), pp. 5061. Available at: https://doi.org/10.1080/08956308.2016.1161409.CrossRefGoogle Scholar
O'Hare, J. (2010) Eco-Innovation Tools for the Early Stages: An Industry-Based Investigation of Tool Customisation and Introduction. PhD Thesis. University of Bath.Google Scholar
Ritzén, S. (2000) Integrating Environmental Aspects into Product Development-Proactive Measures. PhD Thesis. Royal Institute of Technology - KTH.Google Scholar
Rossi, M., Germani, M. and Zamagni, A. (2016) ‘Review of ecodesign methods and tools. Barriers and strategies for an effective implementation in industrial companies’, Journal of Cleaner Production, 129, pp. 361373. Available at: https://doi.org/10.1016/j.jclepro.2016.04.051.CrossRefGoogle Scholar
Rousseaux, P. et al. (2017) ‘“Eco-tool-seeker”: A new and unique business guide for choosing ecodesign tools’, Journal of Cleaner Production, 151, pp. 546577. Available at: https://doi.org/10.1016/j.jclepro.2017.03.089.CrossRefGoogle Scholar
Russell, J.A. and Ward, L.M. (1982) ‘Environmental Psychology’, Annual Review of Psychology, 33(1), pp. 651689. Available at: https://doi.org/10.1146/annurev.ps.33.020182.003251.CrossRefGoogle Scholar
Shneiderman, B. (2002) ‘Creativity Support Tools’, Commun. ACM, 45(10), pp. 116120. Available at: https://doi.org/10.1145/570907.570945.CrossRefGoogle Scholar
Sternberg, R.J. (1999) Handbook of Creativity. Cambridge University Press. Available at: https://books.google.fr/books?id=d1KTEQpQ6vsC.Google Scholar
Teulon, H. (2015) Le guide de l’éco-innovation: Eco-concevoir pour gagner en compétitivité. Editions Eyrolles.Google Scholar
Tyl, B. (2011) L'apport de la créativité dans les processus d’éco-innovation: proposition de l'outil EcoASIT pour favoriser l’éco-idéation de systèmes durables. Thèse de doctorat. Bordeaux 1.Google Scholar
Van Hemel, C. (1998) EcoDesign Empirically Explored: Design for Environment in Dutch Small and Medium-Sized Enterprises. PhD Thesis. TU Delft.Google Scholar
Vezzoli, C. and Sciama, D. (2006) ‘Life Cycle Design: from general methods to product type specific guidelines and checklists: a method adopted to develop a set of guidelines/checklist handbook for the eco-efficient design of NECTA vending machines’, Journal of Cleaner Production, 14, pp. 13191325. Available at: https://doi.org/10.1016/j.jclepro.2005.11.011.CrossRefGoogle Scholar
Wenzel, H. and Alting, L. (1999) ‘Danish experience with the EDIP tool for environmental design of industrial products’, in Proceedings First International Symposium on Environmentally Conscious Design and Inverse Manufacturing. Proceedings First International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Tokyo, Japan: IEEE, pp. 370379. Available at: https://doi.org/10.1109/ECODIM.1999.747640.CrossRefGoogle Scholar
Wenzel, H., Hauschild, M.Z. and Alting, L. (1997) Environmental Assessment of Products. Volume 1 Methodology, tools and case studies in product development. Springer Science & Business Media.Google Scholar
Wise, E. (2006) Understanding User-Driven Innovation. Nordic Council of Ministers (TemaNord).Google Scholar