Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T05:42:07.945Z Has data issue: false hasContentIssue false

PLATFORM APPROACH FOR MODULARISING BATTERY ELECTRIC FAST FERRIES

Published online by Cambridge University Press:  19 June 2023

Tobias Seidenberg*
Affiliation:
Fraunhofer Research Institute for Mechatronic Systems Design IEM
Jan-Philipp Disselkamp
Affiliation:
Fraunhofer Research Institute for Mechatronic Systems Design IEM
Christoph Jürgenhake
Affiliation:
Fraunhofer Research Institute for Mechatronic Systems Design IEM
Harald Anacker
Affiliation:
Fraunhofer Research Institute for Mechatronic Systems Design IEM
Roman Dumitrescu
Affiliation:
University of Paderborn
Apostolos Papanikolaou
Affiliation:
National technical university of Athens
*
Seidenberg, Tobias, Fraunhofer Research Institute for Mechatronic Systems Design IEM, Germany, tobias.seidenberg@iem.fraunhofer.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The transportation sector is responsible for a relevant share of the total emissions and offers great potentials. It is necessary to implement as many zero-emission mobility systems as possible in the shortest time. For fast ferries, which are a relevant transport manner for a large share of the global population, technical issues could be solved and the successful operation was demonstrated. Up to today high-speed ships have been fully individually designed because physical effects demand for an individual optimisation for each use-case. Specifically for battery electric ships the overall efficiency is crucial to ensure not only an ecological but also economical operation.

With today's methods the design and production of such an individual designed ferry does take too long. To cover the rising demand, new approaches for mass production need to be established.

In this paper we describe a method for designing a platform for ships with the example of a battery electric fast ferry. The focus is on the actual modularisation, as other aspects like requirements or results of our example case are published elsewhere and are therefore just included briefly.

The method is validated on the world's first battery powered high-speed ferry.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2023. Published by Cambridge University Press

References

Blessing, L.T. and Chakrabarti, A. (2009), DRM, a Design Research Methodology, Springer London, London.CrossRefGoogle Scholar
Boulougouris, E., Papanikolaou, A., Dahle, M., Tolo, E., Xing-Kaeding, Y., Jürgenhake, C., Seidenberg, T., Sachs, C., Brown, C. and Jenset, F. (2021), “Implementation of Zero Emission Fast Shortsea Shipping”, in Day 2 Thu, October 28, 2021, 27.10.2021 - 29.10.2021, Providence, Rhode Island, USA, SNAME.CrossRefGoogle Scholar
Dahle, M. (2020), “Ensuring efficiency and safety in electric vessels”, available at: https://tramproject.eu/2020/08/06/recording-from-webinar-now-available/ (accessed 3 December 2020).Google Scholar
Disselkamp, J.-P., Seidenberg, T., Anacker, H. and Dumitrescu, R. (2022), “Design of an optimised value creation network for zero emission ferries”, in 2022 IEEE 28th International Conference on Engineering, Technology and Innovation (ICE/ITMC) & 31st International Association For Management of Technology (IAMOT) Joint Conference, 19.06.2022 - 23.06.2022, Nancy, France, IEEE, pp. 19.CrossRefGoogle Scholar
Eitelwein, O., Malz, S. and Weber, J. (2012), “Erfolg durch Modularisierung”, ZfCM (Controlling & Management), Vol. 56 No. S2, pp. 7984.CrossRefGoogle Scholar
European Commission (2018), “A clean planet for all - A European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy”, available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52018DC0773 (accessed 3 December 2020).Google Scholar
European Parliament (2019), “CO2 emissions from cars: facts and figures - Society”, available at: https://www.europarl.europa.eu/news/en/headlines/society/20190313STO31218/co2-emissions-from-cars-facts-and-figures-infographics (accessed 12 February 2021).Google Scholar
Glinz, M. (2017), “A Glossary of Requirements Engineering Terminology. International Requirements Engineering Board, version 1.7”, available at: http://www.compliance-technologies.com/DS/ireb_cpre_glossary_17.pdf (accessed 30 November 2022).Google Scholar
Göpfert, J. (1998), Modulare Produktentwicklung: Zur gemeinsamen Gestaltung von Technik und Organisation, Zugl.: München, Univ., Diss., 1998, Gabler-Edition Wissenschaft Markt- und Unternehmensentwicklung, Dt. Univ.-Verl; Gabler, Wiesbaden.Google Scholar
Authority, Greater London (2022), “Green Transport”, available at: https://www.london.gov.uk/what-we-do/transport/green-transport (accessed 17 October 2022).Google Scholar
Ianssen, C., Ianssen, E. and Sandblost, T. (2017), “Battery/fuel cell fast ferry”, available at: https://www.nho.no/siteassets/nox-fondet/rapporter/2018/nox-report---rev-8.doc-002.pdf (accessed 11 March 2021).Google Scholar
Kleiner, S. and Kramer, C. (2012), “Entwerfen und Entwickeln mit Systems Engineering auf Basis des RFLP-Ansatzes in V6”, in Stelzer, R., Grote, K.-H., Brökel, K., Rieg, F. and Feldhusen, J. (Eds.), Entwerfen, entwickeln, erleben: Methoden und Werkzeuge in der Produktentwicklung, TUDpress, Dresden, pp. 459474.Google Scholar
Krause, D. and Gebhardt, N. (2018), Methodische Entwicklung Modularer Produktfamilien: Hohe Produktvielfalt Beherrschbar Entwickeln, Springer Vieweg, Berlin, Heidelberg.Google Scholar
Nawzad, D. (2021), “Architektur im SE: Anforderungs- und Architekturmodelle strukturiert aufbauen”, available at: https://blog.sophist.de/2021/11/22/architektur-im-se-anforderungs-und-architekturmodelle-strukturiert-aufbauen/ (accessed 30 November 2022).Google Scholar
Pakkanen, J., Juuti, T. and Lehtonen, T. (2016), “Brownfield Process: A method for modular product family development aiming for product configuration”, Design Studies, Vol. 45, pp. 210241.CrossRefGoogle Scholar
Pfeifer, S., Seidenberg, T., Jürgenhake, C., Anacker, H. and Dumitrescu, R. (2020), “Towards a modular product architecture for electric ferries using Model-Based Systems Engineering”, Procedia Manufacturing, Vol. 52, pp. 228233.CrossRefGoogle Scholar
Pimmler, T.U. and Eppinger, S.D. (1994), “Integration analysis of product decom-positions”.CrossRefGoogle Scholar
Seidenberg, T., Disselkamp, J.-P., Schräder, E. and Anacker, H. (2022), “Towards an Optimised Value Creation Network for Modular Investment Goods”, Proceedings of the Design Society, Vol. 2, pp. 25132522.CrossRefGoogle Scholar
Seidenberg, T., Disselkamp, J.-P., Jürgenhake, C., Grobbel, D., Dumitrescu, R. and Papanikolaou, A. (2023), “Development of a modular architecture for complex mechatronic systems”, Proceedings of 33rd CIRP Design Conference, in Press.CrossRefGoogle Scholar
Shukla, P.R., Skea, J., Reisinger, A., Slade, R., Fradera, R., Pathak, M., Khourdajie, A.A., Belkacemi, M., van Diemen, R., Hasija, A., Lisboa, G., Luz, S., Malley, J., McCollum, D., Some, S. and Vyas, P. (2022), “Climate Change 2022 - Mitigation of Climate Change. Summary for Policymakers”, available at: https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_SummaryForPolicymakers.pdf (accessed 17 October 2022).Google Scholar
Simon, H.A. (1962), “The Architecture of Complexity”, Proceedings of the American Philosophical Society, Vol. 106 No. 6, pp. 467482.Google Scholar