Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T06:43:36.335Z Has data issue: false hasContentIssue false

Printing study and design guideline for small hollow structures in medical technology

Published online by Cambridge University Press:  16 May 2024

Eve Sobirey*
Affiliation:
Hamburg University of Technology, Germany
Marie Wegner
Affiliation:
Hamburg University of Technology, Germany
Fabian Niklas Laukotka
Affiliation:
Hamburg University of Technology, Germany
Dieter Krause
Affiliation:
Hamburg University of Technology, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In recent years, interest in additive manufacturing has increased. To overcome challenges such as the correct use of the technology, guidelines are needed to help the user in the fabrication process. However, such guidance is not currently available for all applications. This paper dives into design methods in AM and their transfer to an application example in the field of medical technology. The aim of this paper is to analyse the transferability of a design method for vessel models to small vessel models. To this end, an initial printing study is carried out on simplified hollow structures.

Type
Design for Additive Manufacturing
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2024.

References

Adam, G.A.O. and Zimmer, D. (2015), “On design for additive manufacturing: evaluating geometrical limitations”, Rapid Prototyping Journal, Vol. 21 No. 6, pp. 662670.CrossRefGoogle Scholar
Cogswell, P.M., Rischall, M.A., Alexander, A.E., Dickens, H.J., Lanzino, G. and Morris, J.M. (2020), “Intracranial vasculature 3D printing: review of techniques and manufacturing processes to inform clinical practice”, 3D printing in medicine, Vol. 6 No. 1, p. 18.CrossRefGoogle ScholarPubMed
DIN EN ISO/ASTM 52910 (2020), “Additive Fertigung – Konstruktion - Anforderungen, Richtlinien und Empfehlungen”.Google Scholar
Djokikj, J. and Kandikjan, T. (2022), “DfAM: development of design rules for FFF”, Procedia CIRP, Vol. 112, pp. 370375.CrossRefGoogle Scholar
Durakovic, B. (2018), “Design for additive manufacturing: Benefits, trends and challenges”, Periodicals of Engineering and Natural Sciences (PEN), Vol. 6 No. 2, p. 179.Google Scholar
Formlabs (2019), “Introducing the Form 3 and Form 3L, Powered by Low Force Stereolithography”, available at: https://formlabs.com/blog/introducing-form-3-form-3l-low-force-stereolithography/ (accessed 3 November 2023).Google Scholar
Formlabs (2020), “Flexible 80A Technical Datasheet”, Brochure, available at: https://formlabs-media.formlabs.com/datasheets/2001418-TDS-ENUS-0.pdf (accessed 3 November 2023).Google Scholar
Formlabs (2023), “Manual Form 3”, Brochure, available at: https://media.formlabs.com/m/5a3f3cadc639b857/original/-ENUS-Form-3-Manual.pdf (accessed 3 November 2023).Google Scholar
Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C.B., Wang, C.C., Shin, Y.C., Zhang, S. and Zavattieri, P.D. (2015), “The status, challenges, and future of additive manufacturing in engineering”, Computer-Aided Design, Vol. 69, pp. 6589.CrossRefGoogle Scholar
Hacke, W. (2016), Neurologie, Springer-Lehrbuch, 14., überarbeitete Auflage, Springer Berlin Heidelberg, Berlin, Heidelberg.Google Scholar
Jiang, J. and Ma, Y. (2020), “Path Planning Strategies to Optimize Accuracy, Quality, Build Time and Material Use in Additive Manufacturing: A Review”, Micromachines, Vol. 11 No. 7.CrossRefGoogle ScholarPubMed
Junk, S. and Bär, F. (2023), “Design guidelines for Additive Manufacturing using Masked Stereolithography mSLA”, Procedia CIRP, Vol. 119, pp. 11221127.CrossRefGoogle Scholar
Kashani, N., Cimflova, P., Ospel, J.M., Singh, N., Almekhlafi, M.A., Rempel, J., Fiehler, J., Chen, M., Sakai, N., Agid, R., Heran, M., Kappelhof, M. and Goyal, M. (2021), “Endovascular Device Choice and Tools for Recanalization of Medium Vessel Occlusions: Insights From the MeVO FRONTIERS International Survey”, Frontiers in neurology, Vol. 12, p. 735899.CrossRefGoogle ScholarPubMed
Kuhl, J., Hauschild, J. and Krause, D. (2022), “Comparing friction of additively manufactured materials with animal blood vessels”, Annals of 3D Printed Medicine, Vol. 7, p. 100061.Google Scholar
Lachmayer, R., Ehlers, T. and Lippert, R.B. (2022), Entwicklungsmethodik für die Additive Fertigung, 2. Auflage, Springer Berlin Heidelberg, Berlin, Heidelberg.CrossRefGoogle Scholar
Li, C., Pisignano, D., Zhao, Y. and Xue, J. (2020), “Advances in Medical Applications of Additive Manufacturing”, Engineering, Vol. 6 No. 11, pp. 12221231.CrossRefGoogle Scholar
Liu, A.Y. (2006), “Update on interventional neuroradiology”, The Permanente Journal, Vol. 10 No. 1, pp. 4246.CrossRefGoogle ScholarPubMed
Materialise (2023), “Design Guide | Transparent Resin Printing”, available at: https://i.materialise.com/en/3d-printing-materials/transparent-resin/design-guide (accessed 13 November 2023).Google Scholar
McGuire, L.S., Fuentes, A. and Alaraj, A. (2021), “Three-Dimensional Modeling in Training, Simulation, and Surgical Planning in Open Vascular and Endovascular Neurosurgery: A Systematic Review of the Literature”, World Neurosurgery, Vol. 154, pp. 5363.CrossRefGoogle ScholarPubMed
Nawka, M.T., Spallek, J., Kuhl, J., Krause, D., Buhk, J.H., Fiehler, J. and Frölich, A. (2020), “Evaluation of a modular in vitro neurovascular procedure simulation for intracranial aneurysm embolization”, Journal of neurointerventional surgery, Vol. 12 No. 2, pp. 214219.CrossRefGoogle ScholarPubMed
Oropallo, W. and Piegl, L.A. (2016), “Ten challenges in 3D printing”, Engineering with Computers, Vol. 32 No. 1, pp. 135148.CrossRefGoogle Scholar
Salmi, M. (2021), “Additive Manufacturing Processes in Medical Applications”, Materials (Basel, Switzerland), Vol. 14 No. 1.Google ScholarPubMed
Saver, J.L., Chapot, R., Agid, R., Hassan, A., Jadhav, A.P., Liebeskind, D.S., Lobotesis, K., Meila, D., Meyer, L., Raphaeli, G. and Gupta, R. (2020), “Thrombectomy for Distal, Medium Vessel Occlusions: A Consensus Statement on Present Knowledge and Promising Directions”, Stroke, Vol. 51 No. 9, pp. 28722884.CrossRefGoogle ScholarPubMed
Shakeri, Z., Benfriha, K., Shirinbayan, M., Ghodsian, N. and Tcharkhtchi, A. (2021), “Modeling and Optimization of Fused Deposition Modeling process parameters for cylindricity control by using Taguchi method”, in International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME 2021): 7th-8th October 2021, Mauritius, 10/7/2021 - 10/8/2021, Mauritius, Mauritius, IEEE, Piscataway, NJ, USA, pp. 15.CrossRefGoogle Scholar
Sobirey, E., Schmiech, J., Wegner, M., Flottmann, F., Fiehler, J. and Krause, D. (2023), “Influence of additive manufacturing parameters on patient-specific small vessel models based on the neurointerventional simulator HANNES”, 810 Pages / Transactions on Additive Manufacturing Meets Medicine, Vol. 5 No. 1 (2023): Trans. AMMM.Google Scholar
Spallek, J. and Krause, D. (2016), “Process Types of Customisation and Personalisation in Design for Additive Manufacturing Applied to Vascular Models”, Procedia CIRP, Vol. 50, pp. 281286.CrossRefGoogle Scholar
Spallek, J., Kuhl, J., Wortmann, N., Buhk, J.-H., Frölich, A.M., Nawka, M.T., Kyselyova, A., Fiehler, J. and Krause, D. (2019), “Design for Mass Adaptation of the Neurointerventional Training Model HANNES with Patient-Specific Aneurysm Models”, Proceedings of the Design Society: International Conference on Engineering Design, Vol. 1 No. 1, pp. 897906.Google Scholar
Spallek, J., Sankowski, O. and Krause, D. (2016), Influences of Additive Manufacturing on Design Processes for Customised Products.Google Scholar
Spallek, J., Wortmann, N., Kuhl, J., Wegner, M. and Krause, D. (2020), “Entwicklung und Anwendung medizinischer Simulationsmodelle”, in Krause, D., Hartwich, T.S. and Rennpferdt, C. (Eds.), Produktentwicklung und Konstruktionstechnik: Forschungsergebnisse und -projekte der Jahre 2016 bis 2020, Produktentwicklung und Konstruktionstechnik, Vol. 19, Springer Vieweg, Berlin, Heidelberg, pp. 255272.CrossRefGoogle Scholar
Thompson, M.K., Moroni, G., Vaneker, T., Fadel, G., Campbell, R.I., Gibson, I., Bernard, A., Schulz, J., Graf, P., Ahuja, B. and Martina, F. (2016), “Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints”, CIRP Annals, Vol. 65 No. 2, pp. 737760.CrossRefGoogle Scholar
Wake, N. (Ed.) (2022), 3D printing for the radiologist, Elsevier, St. Louis, Missouri.Google Scholar
Wortmann, N., Spallek, J., Kyselyova, A.A., Frölich, A.M., Fiehler, J. and Krause, D. (2019), “Concept of an in-vitro model for endovascular stroke treatment using additive manufacturing”, Transactions on Additive Manufacturing Meets Medicine, Vol 1 (2019): Trans. AMMM.Google Scholar