Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T10:20:12.277Z Has data issue: false hasContentIssue false

Algebraic cycles and Lehn–Lehn–Sorger–van Straten eightfolds

Published online by Cambridge University Press:  04 October 2021

Robert Laterveer*
Affiliation:
Institut de Recherche Mathématique Avancée, CNRS – Université de Strasbourg, 7 Rue René Descartes, Strasbourg Cedex67084, France(robert.laterveer@math.unistra.fr)

Abstract

This article is about Lehn–Lehn–Sorger–van Straten eightfolds $Z$ and their anti-symplectic involution $\iota$. When $Z$ is birational to the Hilbert scheme of points on a K3 surface, we give an explicit formula for the action of $\iota$ on the Chow group of $0$-cycles of $Z$. The formula is in agreement with the Bloch–Beilinson conjectures and has some non-trivial consequences for the Chow ring of the quotient.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addington, N., On two rationality conjectures for cubic fourfolds, Math. Res. Lett. 23(1) (2016), 113.10.4310/MRL.2016.v23.n1.a1CrossRefGoogle Scholar
Addington, N. and Lehn, M., On the symplectic eightfold associated to a pfaffian cubic fourfold, J. Reine Angew. Math 731 (2017), 129137.Google Scholar
Beauville, A., Some remarks on Kähler manifolds with $c_1=0$, in Classification of algebraic and analytic manifolds (Katata, 1982) (Birkhäuser, Boston, 1983).Google Scholar
Beauville, A., Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differ. Geom. 18(4) (1983), 755782.10.4310/jdg/1214438181CrossRefGoogle Scholar
Beauville, A., On the splitting of the Bloch–Beilinson filtration, in Algebraic cycles and motives (eds. J. Nagel and C. Peters), London Math. Soc. Lecture Notes, Volume 344 (Cambridge University Press, 2007).Google Scholar
Beauville, A. and Donagi, R., La variété des droites d'une hypersurface cubique de dimension $4$, C. R. Acad. Sci. Paris Sér. I Math. 301(14) (1985), 703706.Google Scholar
Beauville, A. and Voisin, C., On the Chow ring of a K3 surface, J. Alg. Geom. 13 (2004), 417426.10.1090/S1056-3911-04-00341-8CrossRefGoogle Scholar
Bloch, S. and Srinivas, V., Remarks on correspondences and algebraic cycles, Am. J. Math. 105(5) (1983), 12351253.10.2307/2374341CrossRefGoogle Scholar
Boissière, S., Camere, C. and Sarti, A., Classification of automorphisms on a deformation family of hyperkähler fourfolds by $p$–elementary lattices, Kyoto J. Math 56(3) (2016), 465499.10.1215/21562261-3600139CrossRefGoogle Scholar
Bolognesi, M. and Pedrini, C., The transcendental motive of a cubic fourfold, J. Pure Appl. Algebr.Google Scholar
Buckley, A. and Košir, T., Determinantal representations of smooth cubic surfaces, Geom. Dedicata 125 (2007), 115140.10.1007/s10711-007-9144-xCrossRefGoogle Scholar
Bülles, T.-H., Motives of moduli spaces on K3 surfaces and of special cubic fourfolds, Manuscripta Math. 161(1–2) (2020), 109124.10.1007/s00229-018-1086-0CrossRefGoogle Scholar
Camere, C., Cattaneo, A. and Laterveer, R., On the Chow ring of cyclic Lehn–Lehn–Sorger–van Straten eightfolds, Glasgow Math. J. (2021), 124. doi:10.1017/S0017089521000069CrossRefGoogle Scholar
Charles, F. and Markman, E., The standard conjectures for holomorphic symplectic varieties deformation equivalent to Hilbert schemes of $K3$ surfaces, Comp. Math. 149(3) (2013), 481494.10.1112/S0010437X12000607CrossRefGoogle Scholar
Chen, H., The Voisin map via families of extensions, arXiv:1806.05771.Google Scholar
Debarre, O., Hyperkähler manifolds, arXiv:1810.02087.Google Scholar
Dolgachev, I., Classical algebraic geometry. A modern view (Cambridge University Press, Cambridge, 2012).10.1017/CBO9781139084437CrossRefGoogle Scholar
Fu, L., Laterveer, R. and Vial, Ch., The generalized Franchetta conjecture for some hyper-Kähler varieties (with an appendix joint with M. Shen), J. Math. Pures Appl. (9) 130 (2019), 135.10.1016/j.matpur.2019.01.018CrossRefGoogle Scholar
Fu, L., Laterveer, R. and Vial, Ch., Multiplicative Chow–Künneth decompositions and varieties of cohomological K3 type, Annali Mat. Pura Appl. 200(5) (2021), 20852126.10.1007/s10231-021-01070-0CrossRefGoogle Scholar
Fu, L., Laterveer, R. and Vial, Ch., The generalized Franchetta conjecture for some hyper-Kähler varieties, II, J. l'Ecole Polytechnique–Math. 8 (2021), 10651097.CrossRefGoogle Scholar
Fu, L., Tian, Z. and Vial, Ch., Motivic hyperkähler resolution conjecture for generalized Kummer varieties, Geometry Topol. 23 (2019), 427492.CrossRefGoogle Scholar
Fulton, W., Intersection theory (Springer–Verlag Ergebnisse der Mathematik, Berlin Heidelberg, New York, Tokyo, 1984).CrossRefGoogle Scholar
Huybrechts, D., A global Torelli theorem for hyperkähler manifolds [after M. Verbitsky], Astérisque (348): Exp. No. 1040, x, 375–403, 2012. Séminaire Bourbaki: Vol. 2010/2011. Exposés 1027–1042.Google Scholar
Jannsen, U., Motivic sheaves and filtrations on Chow groups, in Motives (eds. U. Jannsen), Proceedings of Symposia in Pure Mathematics, Volume 55 (1994), Part 1 (Providence, RI: American Math. Society).10.1090/pspum/055.1/1265533CrossRefGoogle Scholar
Jannsen, U., On finite-dimensional motives and Murre's conjecture, in Algebraic cycles and motives (eds. J. Nagel and C. Peters) (Cambridge University Press, Cambridge, 2007).Google Scholar
Kahn, B., Murre, J. and Pedrini, C., On the transcendental part of the motive of a surface, in Algebraic cycles and motives (eds. J. Nagel and C. Peters) (Cambridge University Press, Cambridge 2007).Google Scholar
Kollár, J., Laza, R., Saccà, G. and Voisin, C., Remarks on degenerations of hyper-Kähler manifolds, to appear in Annales de l'Institut Fourier.Google Scholar
Lahoz, M., Lehn, M., Macrì, E. and Stellari, P., Generalized twisted cubics on a cubic fourfold as a moduli space of stable objects, J. Math. Pures Appl. 114 (2018), 85117.CrossRefGoogle Scholar
Laterveer, R., A remark on the motive of the Fano variety of lines on a cubic, Ann. Math. Québec 41(1) (2017), 141154.10.1007/s40316-016-0070-xCrossRefGoogle Scholar
Laterveer, R., A family of cubic fourfolds with finite-dimensional motive, J. Math. Soc. Japan 70(4) (2018), 14531473.10.2969/jmsj/74497449CrossRefGoogle Scholar
Laterveer, R., Algebraic cycles and EPW cubes, Math. Nachr. 291(7) (2018), 10881113.10.1002/mana.201600518CrossRefGoogle Scholar
Laterveer, R. and Vial, Ch., On the Chow ring of Cynk–Hulek Calabi–Yau varieties and Schreieder varieties, Can. J. Math. 72(2) (2020), 505536.CrossRefGoogle Scholar
Laterveer, R. and Vial, Ch., Zero-cycles on double EPW sextics, Commun. Contemp. Math. 23(4) (2021), 2050040.10.1142/S0219199720500406CrossRefGoogle Scholar
Laterveer, R., Nagel, J. and Peters, C., On complete intersections in varieties with finite-dimensional motive, Quart. J. Math. 70(1) (2019), 71104.10.1093/qmath/hay038CrossRefGoogle Scholar
Lehn, C., Im Zug Nancy–Straßburg, private notes, 2017.Google Scholar
Lehn, C., Twisted cubics on singular cubic fourfolds – on Starr's fibration, Math. Z. 290(1–2) (2018), 379388.10.1007/s00209-017-2021-xCrossRefGoogle Scholar
Lehn, M., Twisted cubics on a cubic fourfold and in involution on the associated $8$-dimensional symplectic manifold, in Oberwolfach Report No. 51/2015.Google Scholar
Lehn, C., Lehn, M., Sorger, C. and van Straten, D., Twisted cubics on cubic fourfolds, J. Reine Angew. Math. 731 (2017), 87128.Google Scholar
Li, C., Pertusi, L. and Zhao, X., Twisted cubics on cubic fourfolds and stability conditions, preprint October 2019.Google Scholar
Muratore, G., The indeterminacy locus of the Voisin map, arXiv:1711.06218.Google Scholar
Murre, J., On a conjectural filtration on the Chow groups of an algebraic variety, parts I and II, Indag. Math. 4 (1993), 177201.10.1016/0019-3577(93)90038-ZCrossRefGoogle Scholar
Murre, J., Nagel, J. and Peters, C., Lectures on the theory of pure motives, University Lecture Series, Volume 61 (American Mathematical Society, Providence, 2013).Google Scholar
Negut, A., Oberdieck, G. and Yin, Q., Motivic decompositions for the Hilbert scheme of points of a K3 surface, arXiv:1912.09320v1.Google Scholar
O'Grady, K., Moduli of sheaves and the Chow group of $K3$ surfaces, J. Math. Pures Appl. 100(5) (2013), 701718.10.1016/j.matpur.2013.01.018CrossRefGoogle Scholar
Paranjape, K., Cohomological and cycle-theoretic connectivity, Ann. Math. 139(3) (1994), 641660.10.2307/2118574CrossRefGoogle Scholar
Pavic, N., Shen, J. and Yin, Q., On O'Grady's generalized Franchetta conjecture, Int. Math. Res. Notices 2017(16) (2017), 49714983.Google Scholar
Rieß, U., On the Chow ring of birational irreducible symplectic varieties, Manuscripta Math. 145 (2014), 473501.10.1007/s00229-014-0698-2CrossRefGoogle Scholar
Scholl, T., Classical motives, in Motives (eds. U. Jannsen), Proceedings of Symposia in Pure Mathematics, Volume 55 (1994), Part 1 (Providence, RI: American Math. Society).10.1090/pspum/055.1/1265529CrossRefGoogle Scholar
Shen, M. and Vial, C., The Fourier transform for certain hyperKähler fourfolds, Memoirs AMS 240 (2016), 1139.10.1090/memo/1139CrossRefGoogle Scholar
Shen, M. and Vial, C., The motive of the Hilbert cube $X^{[}3]$, Forum Math. Sigma 4 (2016), 55 p.10.1017/fms.2016.25CrossRefGoogle Scholar
Shen, J., Yin, Q. and Zhao, X., Derived categories of K3 surfaces, O'Grady's filtration, and zero-cycles on holomorphic symplectic varieties, Compos. Math 156(1) (2020), 179197.10.1112/S0010437X19007735CrossRefGoogle Scholar
Shinder, E. and Soldatenkov, A., On the geometry of the Lehn–Lehn–Sorger–van Straten eightfold, Kyoto J. Math. 57(4) (2017), 789806.CrossRefGoogle Scholar
Vial, Ch., Projectors on the intermediate algebraic Jacobians, New York J. Math. 19 (2013), 793822.Google Scholar
Vial, Ch., On the motive of some hyperkähler varieties, J. Reine Angew. Math. 725 (2017), 235247.Google Scholar
Voisin, C., Chow rings and decomposition theorems for K3 surfaces and Calabi–Yau hypersurfaces, Geom. Topol. 16 (2012), 433473.10.2140/gt.2012.16.433CrossRefGoogle Scholar
Voisin, C., Chow rings, decomposition of the diagonal, and the topology of families (Princeton University Press, Princeton and Oxford, 2014).CrossRefGoogle Scholar
Voisin, C., Rational equivalence of 0-cycles on K3 surfaces and conjectures of Huybrechts and O'Grady, in Recent advances in algebraic geometry, London Math. Soc. Lecture Notes, Volume 417 (Cambridge University Press, Cambridge, 2015).Google Scholar
Voisin, C., The generalized Hodge and Bloch conjectures are equivalent for general complete intersections, II, J. Math. Sci. Univ. Tokyo 22 (2015), 491517.Google Scholar
Voisin, C., Remarks and questions on coisotropic subvarieties and $0$–cycles of hyper–Kähler varieties, in K3 Surfaces and Their Moduli, Proceedings of the Schiermonnikoog conference 2014 (eds. C. Faber, G. Farkas, G. van der Geer), Progress in Maths, Volume 315 (Birkhäuser, 2016).10.1007/978-3-319-29959-4_14CrossRefGoogle Scholar