Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T06:14:10.185Z Has data issue: false hasContentIssue false

Heisenberg-invariant kummer surfaces

Published online by Cambridge University Press:  20 January 2009

K. Hulek
Affiliation:
Institut für Mathematik, Universität Hannover, Postfach 6009, D 30060 Hannover, Germany (hulek@math.uni-hannover.de)
I. Nieto
Affiliation:
Cimat, A.C., Callejon de Jalisco S/N, Col. Mineral de Valenciana, 36000 Guanajuato, Gto., Mexico (nieto@fractal.cimat.mx)
G. K. Sankaran
Affiliation:
Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK (gks@maths.bath.ac.uk)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study, from the point of view of abelian and Kummer surfaces and their moduli, the special quintic threefold known as Nieto's quintic. It is, in some ways, analogous to the Segre cubic and the Burkhardt quartic and can be interpreted as a moduli space of certain Kummer surfaces. It contains 30 planes and has 10 singular points: we describe how some of these arise from bielliptic and product abelian surfaces and their Kummer surfaces.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2000

References

1. Barth, W. and Nieto, I., Abelian surfaces of type (1,3) and quartic surfaces with 16 skew lines, J. Alg. Geom. 3 (1994), 173222.Google Scholar
2. Bauer, T., Projective images of Kummer surfaces, Math. Ann. 299 (1994), 155170.CrossRefGoogle Scholar
3. Gritsenko, V. and Hulek, K., Minimal Siegel modular threefolds, Math. Proc. Camb. Phil. Soc. 123 (1998), 461485.CrossRefGoogle Scholar
4. Hulek, K. and Weintraub, S., Bielliptic abelian surfaces, Math. Ann. 283 (1989), 411429.CrossRefGoogle Scholar
5. Hulek, K., Nieto, I. and Sankaran, G. K., Degenerations of abelian surfaces of type (1,3) and Kummer surfaces, in Algebraic Geometry: Hirzebruch 70 (ed. Pragacz, P., Szurek, M. and Wiśniewski, J.) (AMS Contemporary Mathematics, 1999).Google Scholar
6. Hudson, R. W. H. T., Kummer's quartic surface (Cambridge University Press, 1906; reissued 1990).Google Scholar
7. Hunt, B., The geometry of some special arithmetic quotients, Lecture Notes in Mathematics, no. 1637 (Springer, Berlin, 1996).CrossRefGoogle Scholar
8. Jessop, C. M., Quartic surfaces with singular points (Cambridge University Press, 1916).Google Scholar
9. Lange, H. and Birkenhake, Ch., Complex abelian varieties (Springer, Berlin, 1992).CrossRefGoogle Scholar
10. Mumford, D., On the equations defining abelian varieties, I, Inv. Math. 1 (1966), 287354.CrossRefGoogle Scholar
11. Naruki, I., On smooth quartic embedding of Kummer surfaces, Proc. Jap. Acad. A 67 (1991), 223225.Google Scholar
12. Nieto, I., Invariante Quartiken unter der Heisenberg Gruppe T, PhD thesis, University of Erlangen, 1989.Google Scholar
13. Nieto, I., Examples of abelian surfaces with polarization type (1,3), in Algebraic geometry and singularities (ed. Lopez, C. and Macarro, N.), Progress in Mathematics, vol. 134, pp. 319337 (Birkhauser, Basel, 1996).CrossRefGoogle Scholar
14. Nikulin, V., On Kummer surfaces, Math. USSR. Izv. 9 (1975), 261275.CrossRefGoogle Scholar