Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T12:28:21.329Z Has data issue: false hasContentIssue false

ON $\omega$-INDEPENDENCE AND THE KUNEN–SHELAH PROPERTY

Published online by Cambridge University Press:  17 June 2002

A. S. Granero
Affiliation:
Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad Complutense de Madrid, 28040 Madrid, Spain (granero@mat.ucm.es; marjim@mat.ucm.es)
M. Jiménez-Sevilla
Affiliation:
Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad Complutense de Madrid, 28040 Madrid, Spain (granero@mat.ucm.es; marjim@mat.ucm.es)
J. P. Moreno
Affiliation:
Departamento de Matemáticas, Universidad Autonoma de Madrid, 28049 Madrid, Spain (josepedro.moreno@uam.es)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that spaces with an uncountable $\omega$-independent family fail the Kunen–Shelah property. Actually, if $\{x_i\}_{i\in I}$ is an uncountable $\omega$-independent family, there exists an uncountable subset $J\subset I$ such that $x_j\notin\overline{\co}(\{x_i\}_{i\in J\setminus\{j\}})$ for every $j\in J$. This improves a previous result due to Sersouri, namely that every uncountable $\omega$-independent family contains a convex right-separated subfamily.

AMS 2000 Mathematics subject classification: Primary 46B20; 46B26

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2002