No CrossRef data available.
Published online by Cambridge University Press: 20 January 2009
For each finite group G, let G denote the set of all normal subgroups of the modular group Γ = PSL2(ℤ) with quotient group isomorphic to G; since Γ is finitely generated, the number NG = |G| of such subgroups is finite. We shall be mainly concerned with the case where G is the linear fractional group PSL2(q) over the Galois field GF(q), in which case we shall write (q) and N(q) for G and NG; for q>3, PSL2(q) is simple, so the elements of (q) will be maximal normal subgroups of Γ.