Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T10:02:22.491Z Has data issue: false hasContentIssue false

Apsidal motion in NGC 6231: Sounding the internal structure of massive stars

Published online by Cambridge University Press:  29 August 2024

S. Rosu*
Affiliation:
STAR Institute, Université de Liège, Allée du 6 août 19c, Bât B5c, 4000 Liège, Belgium
G. Rauw
Affiliation:
STAR Institute, Université de Liège, Allée du 6 août 19c, Bât B5c, 4000 Liège, Belgium
M.-A. Dupret
Affiliation:
STAR Institute, Université de Liège, Allée du 6 août 19c, Bât B5c, 4000 Liège, Belgium
A. Noels
Affiliation:
STAR Institute, Université de Liège, Allée du 6 août 19c, Bât B5c, 4000 Liège, Belgium
M. Farnir
Affiliation:
University of Warwick, Coventry CV4 7AL, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The young open cluster NGC 6231 hosts a rich population of O-type binary stars. We study several of these eccentric short-period massive eclipsing binaries and assess their fundamental parameters. The properties of these systems make them interesting targets to study tidally induced apsidal motion. The analysis of apsidal motion offers a powerful means to obtain information about the internal structure of the stars. Indeed, since the rate of apsidal motion in a binary system is proportional to the internal structure constants of the stars composing it, its value gives direct insight into the internal structure and evolutionary state of these stars. Stellar evolution models are constructed based on the observationally-determined fundamental parameters and a theoretical rate of apsidal motion is inferred. The results are striking: Adopting standard stellar evolution models yields a theoretical rate of apsidal motion much larger than the observational value. This discrepancy results from the standard models predicting too low an efficiency of internal mixing and thus too homogenous stars in terms of density. By enforcing the theoretical rates of apsidal motion to match the observational values, enhanced mixing is required, through a large overshooting parameter and/or additional turbulent/rotational mixing. Our analysis leads to the conclusion that the chemically mixed cores in those massive stars must be more extended than anticipated from standard models.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Baroch, D., Giménez, A., Ribas, I., et al. 2021, A&A, 649, A64 Google Scholar
Giménez, A., & Bastero, M. 1995, Ap&SS, 226, 99 Google Scholar
Hejlesen, P. M. 1987 A&AS, 69, 251Google Scholar
Rauw, G., Rosu, S., Noels, A., et al. 2016, A&A, 594, A33 Google Scholar
Rosu, S. 2021, Bulletin de la Société Royale des Sciences de Liège, 90, 1 CrossRefGoogle Scholar
Rosu, S., Noels, A., Dupret, M.-A., et al. 2020a, A&A, 642, A221 Google Scholar
Rosu, S., Rauw, G., Conroy, K. E., et al. 2020b, A&A, 635, A145 Google Scholar
Rosu, S., Rauw, G., Farnir, M., Dupret, M.-A., & Noels, A. 2022a, A&A, 660, A120 Google Scholar
Rosu, S., Rauw, G., Nazé, Y., Gosset, E., & Sterken, C. 2022b, A&A, accepted [arXiv:2205.11207]Google Scholar
Scuflaire, R., Théado, S., Montalbán, J., et al. 2008, Ap&SS, 316, 83 Google Scholar
Shakura, N. I. 1985, Sov. Astron. Lett., 11, 224 Google Scholar
Sterne, T. E. 1939, MNRAS, 99, 451 Google Scholar
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2001 A&A, 369, 574Google Scholar
Zasche, P., & Wolf, M. 2019, AJ, 157, 87 Google Scholar