Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-16T13:27:23.355Z Has data issue: false hasContentIssue false

The Balloon-borne Large Aperture Submillimetre Telescope (BLAST) and BLASTPol

Published online by Cambridge University Press:  30 January 2013

Enzo Pascale
Affiliation:
School of Physics & Astronomy, Cardiff University, 5 The Parade, Cardiff, CF24 3AA, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Balloon observations from Antarctica have proven an effective and efficient way to address open Cosmological questions as well as problems in Galactic astronomy. The Balloon-borne Large Aperture Submillimetre Telescope (BLAST) is a sub-orbital mapping experiment which uses 270 bolometric detectors to image the sky in three wavebands centred at 250, 350 and 500 μm with a 1.8 m telescope. In the years before Herschel launched, BLAST provided data of unprecedented angular and spectral coverage in frequency bands close to the peak of dust emission in star forming regions in our Galaxy, and in galaxies at cosmological distances. More recently, BLASTPol was obtained by reconfiguring the BLAST focal plane as a submillimetric polarimeter to study the role that Galactic magnetic fields have in regulating the processes of star-formation. The first and successful BLASTPol flight from Antarctica in 2010 is followed by a second flight, currently scheduled for the end of 2012.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

André, P., Men'shchikov, A., Bontemps, S., et al. 2010, A&A, 518, L102Google Scholar
Blitz, L., Fukui, Y., Kawamura, A., et al. 2007, in Protostars and Planets V, ed. Reipurth, B., Jewitt, D., & Keil, K., 8196Google Scholar
Chandrasekhar, S. & Fermi, E. 1953, ApJ, 118, 113Google Scholar
Chattopadhyay, G., Glenn, J., Bock, J. J., et al. 2003, IEEE Trans. Micro. T. TechGoogle Scholar
Clements, D. L., Rigby, E., Maddox, S., et al. 2010, A&A, 518, L8Google Scholar
Crutcher, R. M., Wandelt, B., Heiles, C., Falgarone, E., & Troland, T. H. 2010, ApJ, 725, 466CrossRefGoogle Scholar
Devlin, M. J., Ade, P. A. R., Aretxaga, I., et al. 2009, Nature, 458, 737Google Scholar
Dole, H., Lagache, G., Puget, J.-L., et al. 2006, A&A, 451, 417Google Scholar
Falgarone, E., Troland, T. H., Crutcher, R. M., & Paubert, G. 2008, A&A, 487, 247Google Scholar
Fissel, L. M., Ade, P. A. R., Angilè, F. E., et al. 2010, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7741Google Scholar
Glenn, J., Bock, J. J., Chattopadhyay, G., et al. 1998, in Proc. SPIE, Advanced Technology MMW, Radio, and Terahertz Telescopes, Thomas G. Phillips; Ed., Vol. 3357, 326–334Google Scholar
Glenn, J., Conley, A., Béthermin, M., et al. 2010, MNRAS, 409, 109Google Scholar
Goldsmith, P. F., Heyer, M., Narayanan, G., et al. 2008, ArXiv e-prints, 802Google Scholar
Griffin, M. J., Abergel, A., Abreu, A., et al. 2010, A&A, 518, L3Google Scholar
Hennebelle, P., Commerçon, B., Joos, M., et al. 2011, A&A, 528, A72Google Scholar
Hildebrand, R. H., Davidson, J. A., Dotson, J. L., et al. 2000, PASP, 112, 1215CrossRefGoogle Scholar
Hill, T., Motte, F., Didelon, P., et al. 2011, A&A, 533, A94Google Scholar
Li, H., Griffin, G. S., Krejny, M., et al. 2006, ApJ, 648, 340Google Scholar
Li, Z.-Y., Wang, P., Abel, T., & Nakamura, F. 2010, ApJ, 720, L26Google Scholar
Lilly, S. J., Le Fevre, O., Hammer, F., & Crampton, D. 1996, ApJ, 460, L1Google Scholar
Marsden, G., Ade, P. A. R., Benton, S., et al. 2008, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7020Google Scholar
Marsden, G., Ade, P. A. R., Bock, J. J., et al. 2009, ApJ, 707, 1729Google Scholar
McKee, C. F. & Ostriker, E. C. 2007, ARA&A, 45, 565Google Scholar
Moncelsi, L., Ade, P., Elio Angile, F., et al. 2012, ArXiv astro-ph: 1208.4866Google Scholar
Netterfield, C. B., Ade, P. A. R., Bock, J. J., et al. 2009, ApJ, 707, 1824CrossRefGoogle Scholar
Nutter, D. & Ward-Thompson, D. 2007, MNRAS, 374, 1413Google Scholar
Ostriker, C., Stone, J. M., & Gammie, C. F. 2001, ApJ, 546, 980Google Scholar
Pascale, E., Ade, P. A. R., Bock, J. J., et al. 2008, ApJ, 681, 400CrossRefGoogle Scholar
Pascale, E., Ade, P. A. R., Bock, J. J., et al. 2009, ApJ, 707, 1740Google Scholar
Patanchon, G., Ade, P. A. R., Bock, J. J., et al. 2009, ApJ, 707, 1750Google Scholar
Steidel, C. C., Adelberger, K. L., Giavalisco, M., Dickinson, M., & Pettini, M. 1999, ApJ, 519, 1Google Scholar
Valiante, E., Ade, P. A. R., Bock, J. J., et al. 2010, ApJS, 191, 222Google Scholar
Vázquez-Semadeni, E., Ryu, D., Passot, T., González, R. F., & Gazol, A. 2006, ApJ, 643, 245Google Scholar
Viero, M. P., Ade, P. A. R., Bock, J. J., et al. 2009, ApJ, 707, 1766Google Scholar
Ward-Thompson, D., Kirk, J. M., Crutcher, R. M., et al. 2000, ApJ, 537, L135Google Scholar
Ward-Thompson, D., Sen, A. K., Kirk, J. M., & Nutter, D. 2009, MNRAS, 398, 394Google Scholar