Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T21:22:38.611Z Has data issue: false hasContentIssue false

Bar-Driven Star and Star Cluster Formations and Gas Fueling to Galactic Center

Published online by Cambridge University Press:  09 June 2023

Hidenori Matsui
Affiliation:
National Institute of Technology, Asahikawa College, Asahikawa, Shunkodai 2-2-1-6, Asahikawa, Hokkaido, 071-8142, Japan
Toshiyasu Masakawa
Affiliation:
The Open University of Japan
Asao Habe
Affiliation:
Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
Takayuki R. Saitoh
Affiliation:
Department of Planetology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In order to study gas evolution in the central region of a barred galaxy, we have performed numerical simulations of gas in the potential of the barred galaxy. We have found that the bar potential produces a gas ring within the central 1 kpc region. In the gas ring, active star and star cluster formations take place. Since the gas ring is dense enough to become self-gravitationally unstable, gas clouds form in the ring. These gas clouds interact gravitationally and collide with the other clouds. Such interaction and collision reduces their angular momentums effectively, and finally gas clouds fall into the galactic center. These processes triggers episodic gas fueling to the galactic center.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Baba, J., & Kawata, D. 2020, MNRAS, 492, 4500 10.1093/mnras/staa140CrossRefGoogle Scholar
Benedict, G. F., Howell, D. A., Jørgensen, I., Kenney, J. D. P., & Smith, B. J. 2002, AJ, 123, 1411 10.1086/338895CrossRefGoogle Scholar
Gillessen, S., Plewa, P. M., Eisenhauer, F., et al. 2017, ApJ, 837, 30 10.3847/1538-4357/aa5c41CrossRefGoogle Scholar
Matsui, H., Tanikawa, A., & Saitoh, T. R. 2019, PASJ, 71, 19 10.1093/pasj/psy139CrossRefGoogle Scholar
Matsui, H., Saitoh, T. R., Makino, J., et al. 2012, ApJ, 746, 26 10.1088/0004-637X/746/1/26CrossRefGoogle Scholar
Monari, G., Famaey, B., Siebert, A., et al. 2016, MNRAS, 461, 3835 10.1093/mnras/stw1564CrossRefGoogle Scholar
Morris, M., & Serabyn, E. 1996, ARA&A, 34, 645 10.1146/annurev.astro.34.1.645CrossRefGoogle Scholar
Oka, T., Tsujimoto, S., Iwata, Y., Nomura, M., & Takekawa, S. 2017, Nature Astronomy, 1, 709 10.1038/s41550-017-0224-zCrossRefGoogle Scholar
Portegies Zwart, S. F., Baumgardt, H., Hut, P., Makino, J., & McMillan, S. L. W. 2004, Nature, 428, 724 10.1038/nature02448CrossRefGoogle Scholar
Saitoh, T. R., Daisaka, H., Kokubo, E., et al. 2008, PASJ, 60, 667 10.1093/pasj/60.4.667CrossRefGoogle Scholar
Saitoh, T. R., Daisaka, H., Kokubo, E. 2009, PASJ, 61, 481 10.1093/pasj/61.3.481CrossRefGoogle Scholar
Sofue, Y. 2012, PASJ, 64, 75 10.1093/pasj/64.4.75CrossRefGoogle Scholar