Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T21:19:10.305Z Has data issue: false hasContentIssue false

Black Hole dynamics in Young Star Clusters

Published online by Cambridge University Press:  11 March 2020

Sara Rastello
Affiliation:
Dipartimento di Fisica e Astronomia ‘G. Galilei’, University of Padova, Vicolo dell’Osservatorio 3, I-35122, Padova, Italy email: sara.rastello88@gmail.com INFN, Sezione di Padova, Via Marzolo 8, I-35131, Padova, Italy
Ugo N. di Carlo
Affiliation:
INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122, Padova, Italy Dipartimento di Scienza e Alta Tecnologia, University of Insubria, Via Valleggio 11, I-22100, Como, Italy INFN, Sezione di Padova, Via Marzolo 8, I-35131, Padova, Italy
Michela Mapelli
Affiliation:
Dipartimento di Fisica e Astronomia ‘G. Galilei’, University of Padova, Vicolo dell’Osservatorio 3, I-35122, Padova, Italy email: sara.rastello88@gmail.com INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122, Padova, Italy INFN, Sezione di Padova, Via Marzolo 8, I-35131, Padova, Italy
Nicola Giacobbo
Affiliation:
Dipartimento di Fisica e Astronomia ‘G. Galilei’, University of Padova, Vicolo dell’Osservatorio 3, I-35122, Padova, Italy email: sara.rastello88@gmail.com INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122, Padova, Italy INFN, Sezione di Padova, Via Marzolo 8, I-35131, Padova, Italy
Alessandro Ballone
Affiliation:
Dipartimento di Fisica e Astronomia ‘G. Galilei’, University of Padova, Vicolo dell’Osservatorio 3, I-35122, Padova, Italy email: sara.rastello88@gmail.com INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122, Padova, Italy INFN, Sezione di Padova, Via Marzolo 8, I-35131, Padova, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Young star clusters are a promising environment for forming binary black holes. Such binaries may form dynamically or via binary star evolution or through the interplay of these two channels. To study these formation pathways, we have performed high precision direct N-body simulations of low-mass (M < 1000 M) young star clusters. The simulations were carried out with the code Nbody6++GPU coupled with the population synthesis code MOBSE. Our results highlight the importance of dynamics to form massive black hole binaries even in low-mass young star clusters.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R. X., & et al., 2016, Phys. Rev. Lett., 116, 061102CrossRefGoogle Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R. X., & et al., 2016, Phys. Rev. Lett., 6, 041015Google Scholar
Abbott, B. P., et al., 2018 arXiv e-prints, arXiv:1811.12907Google Scholar
Arca-Sedda, M., Li, G., & Kocsis, B., 2018, ArXiv e-prints, arXiv:1805.06458Google Scholar
Askar, A., Szkudlarek, M., Gondek-Rosińska, D., Giersz, M., & Bulik, T., 2017, MNRAS, 464, L36CrossRefGoogle Scholar
Banerjee, S., Baumgardt, H., & Kroupa, P., 2010, MNRAS, 402, 371CrossRefGoogle Scholar
Banerjee, S., 2017, MNRAS, 467, 524Google Scholar
Banerjee, S., 2018, MNRAS, 473, 909CrossRefGoogle Scholar
Belczynski, K., Holz, D. E., Bulik, T., & O’Shaughnessy, R., 2016, Nature, 534, 512CrossRefGoogle Scholar
Di Carlo, U. N., Giacobbo, N., Mapelli, M., Pasquato, M., Spera, M., Wang, L., & Haardt, F., 2019, MNRAS, 487, 2947CrossRefGoogle Scholar
Giacobbo, N., Mapelli, M., & Spera, M., 2018, MNRAS, 474, 2959CrossRefGoogle Scholar
Giacobbo, N. & Mapelli, M., 2018, MNRAS, 480, 2011CrossRefGoogle Scholar
Giacobbo, N. & Mapelli, M., 2019, MNRAS, 482, 2234CrossRefGoogle Scholar
Hurley, J. R., Pols, O. R., & Tout, C. A., 2002, MNRAS, 329, 897CrossRefGoogle Scholar
Küpper, A. H. W., Maschberger, T., Kroupa, P., & Baumgardt, H., 2011, MNRAS, 417, 2300CrossRefGoogle Scholar
Lada, C. J. & Lada, E. A., 2003, ARAA, 41, 57CrossRefGoogle Scholar
Mapelli, M., 2016, MNRAS 459, 3432CrossRefGoogle Scholar
Mapelli, M. & Giacobbo, N., 2018, MNRAS, 479, 4391CrossRefGoogle Scholar
Peters, P. C., 1964, Phys. Rev. A, 136, 1224CrossRefGoogle Scholar
Portegies Zwart, S. F. & McMillan, S. L. W., 2000, ApJ, 528, 17CrossRefGoogle Scholar
Rodriguez, C. L., Chatterjee, S., & Rasio, F. A., 2016, Phys. Rev. A, 93, 084029Google Scholar
Rastello, S., Amaro-Seoane, P., Arca-Sedda, M., Capuzzo-Dolcetta, R., Fragione, G., & Tosta e Melo, I., 2019, MNRAS, 483, 1233CrossRefGoogle Scholar
Sana, H., de Mink, S. E., de Koter, A., Langer, N., Evans, C. J., Gieles, M., Gosset, E., Izzard, R. G., Le Bouquin, J.-B., & Schneider, F. R. N., 2012, Science, 337, 444CrossRefGoogle Scholar
Wang, L., Spurzem, R., Aarseth, S., Nitadori, K., Berczik, P., Kouwenhoven, M. B. N., & Naab, T., 2015, MNRAS, 450, 4070CrossRefGoogle Scholar
Ziosi, B. M., Mapelli, M., Branchesi, M., & Tormen, G., 2014, MNRAS, 441, 3703CrossRefGoogle Scholar