Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T14:58:54.464Z Has data issue: false hasContentIssue false

Chemical evolution of Seyfert galaxies

Published online by Cambridge University Press:  01 July 2007

Silvia K. Ballero
Affiliation:
Dipartimento di Astronomia, Università di Trieste, via G.B. Tiepolo 11, 34124 Trieste, Italy INAF, Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, 34124 Trieste, Italy
Francesca Matteucci
Affiliation:
Dipartimento di Astronomia, Università di Trieste, via G.B. Tiepolo 11, 34124 Trieste, Italy INAF, Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, 34124 Trieste, Italy
Luca Ciotti
Affiliation:
Dipartimento di Astronomia, Università di Bologna, via Ranzani 1, 40127, Bologna, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We computed the chemical evolution of Seyfert galaxies, residing in spiral bulges, based on an updated model for the Milky Way bulge with updated calculations of the Galactic potential and of the feedback from the central supermassive black hole (BH) in a spherical approximation. We followed the evolution of bulges of masses 2 × 109 − 1011M by scaling the star-formation efficiency and the bulge scalelenght as in the inverse-wind scenario for ellipticals. We successfully reproduced the observed relation between the BH mass and that of the host bulge, and the observed peak nuclear bolometric luminosity. The observed metal overabundances are easily achieved, as well as the constancy of chemical abundances with the redshift.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Ballero, S. K., Matteucci, F., Origlia, L., & Rich, R. M. 2007, A&A 467, 123Google Scholar
Dietrich, M., Hamann, F., Appenzeller, I., & Vestergaard, M. 2003, ApJ 596, 817CrossRefGoogle Scholar
Di Matteo, T., Springel, V., & Hernquist, L. 2005, Nature 433, 604CrossRefGoogle Scholar
Fields, D. L., Mathur, S., Pogge, R. W., Nicastro, F., & Komossa, S. 2005a, ApJ 620, 183CrossRefGoogle Scholar
Fields, D. L., Mathur, S., Pogge, R. W., Nicastro, F., Komossa, S. & Krongold, Y. 2005b, ApJ 634, 928CrossRefGoogle Scholar
Hernquist, L. 1990, ApJ 356, 359CrossRefGoogle Scholar
Ivanov, V. D., Alonso-Herrero, A., & Rieke, M. J. 2003, in: Pérez, E., González Delgado, R.M. & Tenorio-Tagle, G. (eds.), Star Formation through Time (ASP Conf. Series), p. 165Google Scholar
Marconi, A. & Hunt, L. 2003, ApJ 589, 21CrossRefGoogle Scholar
Matteucci, F. 1994, A&A 288, 57Google Scholar
McLure, R. J. & Dunlop, J. S. 2002, MNRAS 331, 795CrossRefGoogle Scholar
Peterson, B. M. 2003, in: Collin, S., Combes, F., Shlosman, I. (eds.), Active Galactic Nuclei: from central engine to host galaxy (ASP Conf. Series), p. 43Google Scholar
Pipino, A., Matteucci, F., Borgani, S., & Biviano, A. 2002, NewA 7, 227CrossRefGoogle Scholar
Sazonov, S. Yu., Ostriker, J. P., Ciotti, L., Sunyaev, R. A. 2005, MNRAS 358, 168CrossRefGoogle Scholar
Storchi-Bergmann, T., Wilson, A. S., & Baldwin, J. A. 1996, ApJ 460, 252CrossRefGoogle Scholar
Wang, R. & Wu, X.-B. 2005, ChJAA 5, 299Google Scholar
Yu, Q. & Tremaine, S. 2002, MNRAS 335, 965CrossRefGoogle Scholar