Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T17:40:53.280Z Has data issue: false hasContentIssue false

Constraints on the stellar upper mass limit from simulations of UV disk ablation

Published online by Cambridge University Press:  29 August 2024

N. Dylan Kee*
Affiliation:
National Solar Observatory, 22 Ohi’a Ku St, Makawao, HI 96768, USA
Rolf Kuiper
Affiliation:
Faculty of Physics, University of Duisburg-Essen, Lotharstraße 1, D-47057 Duisburg, Germany
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This contribution presents recent advances in identifying the stellar upper mass limit using simulations of UV radiative feedback during the star formation process. Generally, due to computational costs and a focus on au to parsec scales, simulations of massive star formation do not trace the flow of material to distances closer than a few au from the forming star. However, UV line-acceleration acts directly on accreting material in the sub-au circumstellar region, thereby efficiently ablating the surface layers off the protostellar disk. For stars on the order of a few hundred solar masses, this disk destruction rate exceeds the accretion rate, destroying the disk faster than it is replenished, and setting a maximum stellar mass as a function of metallicity that can be attained by single star formation channels.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Beltrán, M. T. & de Wit, W. J. 2016, Accretion disks in luminous young stellar objects. A&AR, 24, 6.Google Scholar
Castor, J. I., Abbott, D. C., & Klein, R. I. 1975, Radiation-driven winds in Of stars. ApJ, 195, 157174.10.1086/153315CrossRefGoogle Scholar
Ekström, S., Georgy, C., Eggenberger, P., Meynet, G., Mowlavi, N., Wyttenbach, A., Granada, A., Decressin, T., Hirschi, R., Frischknecht, U., Charbonnel, C., & Maeder, A. 2012, Grids of stellar models with rotation. I. Models from 0.8 to 120 Mȯ at solar metallicity (Z = 0.014). A&A, 537, A146.Google Scholar
Hosokawa, T., Yorke, H. W., & Omukai, K. 2010, Evolution of Massive Protostars Via Disk Accretion. ApJ, 721(1), 478492.CrossRefGoogle Scholar
Kee, N. D. & Kuiper, R. 2019, Line-driven ablation of circumstellar discs: IV. The role of disc ablation in massive star formation and its contribution to the stellar upper mass limit. MNRAS, 483(4), 4893–4900.10.1093/mnras/sty3394CrossRefGoogle Scholar
Kee, N. D., Owocki, S., & Kuiper, R. 2018, Line-driven ablation of circumstellar discs - III. Accounting for and analysing the effects of continuum optical depth. MNRAS, 479(4), 4633–4641.Google Scholar
Kee, N. D., Owocki, S., & Sundqvist, J. O. 2016, Line-driven ablation of circumstellar discs - I. Optically thin decretion discs of classical Oe/Be stars. MNRAS, 458(3), 2323–2335.Google Scholar
Klassen, M., Pudritz, R. E., Kuiper, R., Peters, T., & Banerjee, R. 2016, Simulating the Formation of Massive Protostars. I. Radiative Feedback and Accretion Disks. ApJ, 823(1), 28.Google Scholar
Kudritzki, R. P., Pauldrach, A., Puls, J., & Abbott, D. C. 1989, Radiation-driven winds of hot stars. VI. Analytical solutions for wind models including the finite cone angle effect. A&A, 219, 205–218.Google Scholar
Kuiper, R. & Hosokawa, T. 2018, First hydrodynamics simulations of radiation forces and photoionization feedback in massive star formation. A&A, 616, A101.Google Scholar
Maud, L. T., Cesaroni, R., Kumar, M. S. N., van der Tak, F. F. S., Allen, V., Hoare, M. G., Klaassen, P. D., Harsono, D., Hogerheijde, M. R., Sánchez-Monge, Á., Schilke, P., Ahmadi, A., Beltrán, M. T., Beuther, H., Csengeri, T., Etoka, S., Fuller, G., Galván-Madrid, R., Goddi, C., Henning, T., Johnston, K. G., Kuiper, R., Lumsden, S., Moscadelli, L., Mottram, J. C., Peters, T., Rivilla, V. M., Testi, L., Vig, S., de Wit, W. J., & Zinnecker, H. 2018, Chasing discs around O-type (proto)stars. ALMA evidence for an SiO disc and disc wind from G17.64+0.16. A&A, 620, A31.Google Scholar
Mignon-Risse, R., González, M., & Commerçon, B. 2021, Collapse of turbulent massive cores with ambipolar diffusion and hybrid radiative transfer. II. Outflows. A&A, 656, A85.Google Scholar
Oliva, G. A. & Kuiper, R. 2020, Modeling disk fragmentation and multiplicity in massive star formation. A&A, 644, A41.Google Scholar
Rosen, A. L. 2022, A Massive Star is Born: How Feedback from Stellar Winds, Radiation Pressure, and Collimated Outflows Limits Accretion onto Massive Stars. arXiv e-prints, arXiv:2204.09700.Google Scholar
Tanaka, K. E. I., Tan, J. C., Zhang, Y., & Hosokawa, T. 2018, The Impact of Feedback in Massive Star Formation. II. Lower Star Formation Efficiency at Lower Metallicity. ApJ, 861(1), 68.Google Scholar
Yusof, N., Hirschi, R., Meynet, G., Crowther, P. A., Ekström, S., Frischknecht, U., Georgy, C., Abu Kassim, H., & Schnurr, O. 2013, Evolution and fate of very massive stars. MNRAS, 433(2), 11141132.10.1093/mnras/stt794CrossRefGoogle Scholar