Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T18:59:44.419Z Has data issue: false hasContentIssue false

Convection during the formation of gaseous giants and stars

Published online by Cambridge University Press:  01 August 2006

Günther Wuchterl*
Affiliation:
Thüringer Landessternwarte Tautenburg Sternwarte 5, D–07778 Tautenburg, Germany email: gwuchterl@TLS-Tautenburg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Convection theories for star and planet formation studies have to be (1) simple, to allow a self-consistent solution with other relevant processes, (2) time-dependent, because convection often starts in collapse-flows, and (3) robust, i.e. physically well-behaved under a wide range of conditions ranging from the quiet protoplanetary nebula to supercritical protostellar accretion-shocks with Mach-numbers of a few hundred. I describe how the equations of radiation fluid-dynamics can be augmented by a one-equation convection model in order to construct a system of equations that contains the Sun, brown dwarfs and planets as well as their nearly isothermal parent-clouds. The system of equations is calibrated to the Sun and tested by the solar convection zone and the pulsations of RR-Lyrae stars. I discuss the following applications: (1) star formation as the collapse of Bonnor-Ebert spheres of masses ranging from the stellar domain to the brown dwarf region, (2) the approach to the main sequence, (3) companion mass determinations for direct imaging searches for exoplanets, with GQ Lupi as an example, and (4) the formation of Pegasi-planets, and the “large core” exoplanet, HD 149 026, in particular.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Broeg, C. 2006, Ph.D. thesis, Universität JenaGoogle Scholar
Broeg, C. & Wuchterl, G. 2006, in Arnold, L., Bouchy, F., & Moutou, C. (eds.), Tenth Anniversary of 51 Peg-b: Status of and prospects for hot Jupiter studies, pp 7077Google Scholar
Flaskamp, M. 2003, Ph.D. thesis, Tech. Univ. MunichGoogle Scholar
Ikoma, M., Emori, H. & Nakazawa, K. 2001, ApJ 553, 999CrossRefGoogle Scholar
Kuhfuß, R. 1987, Ph.D. thesis, Tech. Univ. MunichGoogle Scholar
Larson, R.B. 1969, MNRAS 145, 271CrossRefGoogle Scholar
Neuhäuser, R., Guenther, E.W., Wuchterl, G., Mugrauer, M., Bedalov, A. & Hauschildt, P.H. 2005, A&A 435, L13Google Scholar
Sato, B., Fischer, D.A., Henry, G.W., Laughlin, G., Butler, R.P., Marcy, G.W., Vogt, S.S., Bodenheimer, P., Ida, S., Toyota, E., Wolf, A., Valenti, J.A., Boyd, L.J., Johnson, J.A., Wright, J.T., Ammons, M., Robinson, S., Strader, J., McCarthy, C., Tah, K.L. & Minniti, D. 2005, ApJ 633, 465CrossRefGoogle Scholar
Straka, C.W. & Tscharnuter, W.M. 2001, A&A 372, 579Google Scholar
Wuchterl, G. 1991, Icarus 91, 39CrossRefGoogle Scholar
Wuchterl, G. 1993, Icarus 106, 323CrossRefGoogle Scholar
Wuchterl, G. 1995a, Earth Moon and Planets 67, 51CrossRefGoogle Scholar
Wuchterl, G. 1995b, Computer Physics Communications 89, 119CrossRefGoogle Scholar
Wuchterl, G. & Feuchtinger, M.U. 1998, A&A 340, 419Google Scholar
Wuchterl, G., Guillot, T. & Lissauer, J.J. 2000, Protostars and Planets IV pp 1081–+Google Scholar
Wuchterl, G. & Klessen, R.S. 2001, ApJ 560, L185CrossRefGoogle Scholar
Wuchterl, G. & Tscharnuter, W.M. 2003, A&A 398, 1081Google Scholar