Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T05:54:44.345Z Has data issue: false hasContentIssue false

Damping of non-isothermal hot coronal loops oscillations

Published online by Cambridge University Press:  01 September 2007

M. Luna-Cardozo
Affiliation:
SP2RC, Department of Applied Mathematics, University of Sheffield, Sheffield S3 7RH, UK emails: m.luna@sheffield.ac.uk; robertus@sheffield.ac.uk
R. Erdélyi
Affiliation:
SP2RC, Department of Applied Mathematics, University of Sheffield, Sheffield S3 7RH, UK emails: m.luna@sheffield.ac.uk; robertus@sheffield.ac.uk
César A. Mendoza-Briceño
Affiliation:
Centro de Física Fundamental CFF, Facultad de Ciencias, Universidad de Los Andes, La Hechicera, Mérida 5101, Venezuela, email: cesar@ula.ve
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Here we investigate longitudinal waves in non-isothermal hot (T ≥ 5.0 MK) coronal loops. Motivated by SOHO SUMER and Yohkoh SXT observations and taking into account gravitational stratification, thermal conduction, compressive viscosity, radiative cooling, and heating, the governing equations of 1D hydrodynamics is solved numerically for standing wave oscillations along a magnetic field line. A semicircular shape is chosen to represent a coronal loop. It was found that the decay time of standing waves decreases with the increase of the initial temperature and the periods of oscillations are affected by the different initial velocities and loop lengths studied by the numerical experiments. The predicted decay times are within the range of values inferred from Doppler-shift oscillations observed by SUMER in hot coronal loops.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Banerjee, D., Erdélyi, R., Oliver, R. & O'Shea, E. 2007, Sol. Phys., 246, 3Google Scholar
Braginskii, S. I. 1965, Rev. Plasma Phys., 1, 205Google Scholar
Erdélyi, R. 2006a, Phil. Trans. Roy. Soc. A, 364, 351CrossRefGoogle Scholar
Erdélyi, R. 2006b, in: Fletcher, K. (ed.) & Thompson, M. (sci. ed.), SOHO 18/GONG 2006/HELAS I, Beyond the spherical Sun, ESA-SP, 624, 15.1Google Scholar
Erdélyi, R. & Goossens, M. 1995, A&A, 294, 575Google Scholar
Hildner, E. 1974, Sol. Phys., 35, 123Google Scholar
Kliem, B., Dammasch, I. E., Curdt, W. & Wilhelm, K. 2002, ApJ, 568, L61Google Scholar
Mendoza-Briceño, C. A., Erdélyi, R. & Sigalotti, L. Di G. 2004, ApJ, 605, 493CrossRefGoogle Scholar
Ofman, L. & Wang, T. 2002, ApJ, 580, L85Google Scholar
Roberts, B., Edwin, P. M., & Benz, A. O. 1984, ApJ, 279, 857Google Scholar
Sigalotti, L. Di G., Mendoza-Briceño, C. A. & Luna-Cardozo, M. 2007, Sol. Phys., in press.Google Scholar
Sigalotti, L.Di G. & Mendoza-Briceño, C. A. 2003, A&A, 397, 1083Google Scholar
Taroyan, Y., Erdélyi, R., Doyle, J. G., & Bradshaw, S. J. 2005, A&A, 438, 713Google Scholar
Taroyan, Y., Erdélyi, R., Wang, T. J. & Bradshaw, S. J. 2007 ApJ 659, L173Google Scholar
Wang, T. J., Solanki, S. K., Curdt, W., Innes, D. E., & Dammasch, I. E. 2002, ApJ, 574, L101CrossRefGoogle Scholar
Wang, T. J., Solanki, S. K., Innes, D. E., Curdt, W. & Marsch, E. 2003, A&A, 402, L17Google Scholar