Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T05:51:21.307Z Has data issue: false hasContentIssue false

Damping of standing slow waves in hot coronal loops

Published online by Cambridge University Press:  01 September 2007

Leonardo Di G. Sigalotti
Affiliation:
Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Física, Laboratorio de Física de Fluidos y Plasmas, Caracas-Venezuela email: leonardo.sigalotti@gmail.com
César A. Mendoza-Briceño
Affiliation:
Centro de Física Fundamental, Facultad de Ciencias, Universidad de los Andes, Merida-Venezuela email: cesar@ula.ve
Marialejandra Luna-Cardozo
Affiliation:
SP2RC, Department of Applied Mathematics, University of Sheffield, Sheffield S3 7RH, UK email: m.luna@sheffield.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The damping of standing slow mode oscillations in hot (T > 6 MK) coronal loops is described in the linear limit. The effects of energy dissipation by thermal conduction, viscosity, and radiative losses and gains are examined for both stratified and nonstratified loops. We find that thermal conduction acts on the way of increasing the period of the oscillations over the sound crossing time, whereas the decay times are mostly determined by viscous dissipation. Thermal conduction alone results in slower damping of the density and velocity waves compared to the observations. Only when viscosity is added do these waves damp out at the same rate of the observed SUMER loop oscillations. In the linear limit, the periods and decay times are barely affected by gravity.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Banerjee, D.Erdélyi, R., Oliver, R., O'Shea, E. 2007, Sol. Phys., 246, 3CrossRefGoogle Scholar
De Moortel, I. and Hood, A.W.: 2003, Astron. Astrophys. 408, 755.CrossRefGoogle Scholar
De Moortel, I. and Hood, A.W.: 2004, Astron. Astrophys. 415, 705.CrossRefGoogle Scholar
De Moortel, I., Ireland, J., and Walsh, R.W.: 2000, Astron. Astrophys. 355, L23.Google Scholar
Kliem, B., Dammasch, I.E., Curdt, W., and Wilhelm, K.: 2002, Astrophys. J. 568, L61.CrossRefGoogle Scholar
Mendoza-Briceño, C.A., Erdélyi, R., and Sigalotti, L.Di G.: 2004, Astrophys. J. 605, 493.CrossRefGoogle Scholar
Nakariakov, V.M. and Ofman, L.: 2001, Astron. Astrophys. 372, L53.CrossRefGoogle Scholar
Ofman, L. and Wang, T.: 2002, Astrophys. J. 580, L85.CrossRefGoogle Scholar
Roberts, B.: 2006, Roy. Soc. London Trans. Series A 364, 447.Google Scholar
Taroyan, Y., Erdélyi, R., Doyle, J.G., and Bradshaw, S.J.: 2005, Astron. Astrophys. 438, 713.CrossRefGoogle Scholar
Taroyan, Y., Erdélyi, R., Wang, T. J. & Bradshaw, S. J. 2007 ApJ 659, L173CrossRefGoogle Scholar
Wang, T.J., Solanki, S.K., Innes, D.E., and Curdt, W.: 2005, Astron. Astrophys. 435, 753.CrossRefGoogle Scholar
Wang, T.J., Solanki, S.K., Innes, D.E., Curdt, W., and Marsch, E.: 2003b, Astron. Astrophys. 402, L17.CrossRefGoogle Scholar
Wang, T.J., Solanki, S.K., Curdt, W., Innes, D.E., Dammasch, I.E., and Kliem, B.: 2003a, Astron. Astrophys. 406, 1105.CrossRefGoogle Scholar