Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T17:05:34.063Z Has data issue: false hasContentIssue false

Dancing with Black Holes

Published online by Cambridge University Press:  01 September 2007

S. J. Aarseth*
Affiliation:
Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK email: sverre@ast.cam.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We describe efforts over the last six years to implement regularization methods suitable for studying one or more interacting black holes by direct N-body simulations. Three different methods have been adapted to large-N systems: (i) Time-Transformed Leapfrog, (ii) Wheel-Spoke, and (iii) Algorithmic Regularization. These methods have been tried out with some success on GRAPE-type computers. Special emphasis has also been devoted to including post-Newtonian terms, with application to moderately massive black holes in stellar clusters. Some examples of simulations leading to coalescence by gravitational radiation will be presented to illustrate the practical usefulness of such methods.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Aarseth, S. J. 2003a, Gravitational N-Body Simulations (Cambridge Univ. Press)CrossRefGoogle Scholar
Aarseth, S. J. 2003b, AP&SS 285, 367Google Scholar
Aarseth, S. J. 2007, MNRAS 378, 285CrossRefGoogle Scholar
Aarseth, S. J. & Zare, K. 1974, Celes. Mech. 10, 185CrossRefGoogle Scholar
Berczik, P., Merritt, D., Spurzem, R., & Bischof, H. 2006, ApJ (Letters) 642, L21CrossRefGoogle Scholar
Blanchet, L. & Iyer, B. 2003, Class. Quant. Grav. 20, 755CrossRefGoogle Scholar
Bulirsch, R. & Stoer, J. 1966, Num. Math. 8, 1CrossRefGoogle Scholar
Iwasawa, M., Funato, Y., & Makino, J. 2006, ApJ 651, 1059CrossRefGoogle Scholar
Kozai, Y. 1962, AJ 67, 591CrossRefGoogle Scholar
Kupi, G., Amaro–Seoane, P., & Spurzem, R. 2006, MNRAS 371, L45CrossRefGoogle Scholar
Kustaanheimo, P. & Stiefel, E. 1965, J. Reine Angew. Math. 218, 204CrossRefGoogle Scholar
Lee, M. H. 1993, ApJ 418, 147CrossRefGoogle Scholar
Mikkola, S. & Aarseth, S. J. 1993, Celes. Mech. Dyn. Astron. 57, 439CrossRefGoogle Scholar
Mikkola, S. & Aarseth, S. J. 2002, Celes. Mech. Dyn. Astron. 84, 343CrossRefGoogle Scholar
Mikkola, S. & Merritt, D. 2006, MNRAS 372, 219CrossRefGoogle Scholar
Mikkola, S. & Tanikawa, K. 1999, MNRAS 310, 745CrossRefGoogle Scholar
Mora, T. & Will, C. 2004, Phys. Rev. D 69, 104021CrossRefGoogle Scholar
Peters, P. C. 1964, Phys. Rev. 136, B1222CrossRefGoogle Scholar
Preto, M. & Tremaine, S. 1999, AJ 118, 2532CrossRefGoogle Scholar
Saslaw, W. C., Valtonen, M. & Aarseth, S. J. 1974, ApJ 190, 253CrossRefGoogle Scholar
Soffel, M. H. 1989, Relativity in Astrometry, Celestial Mechanics and Geodesy (Springer)CrossRefGoogle Scholar
Zare, K. 1974, Celes. Mech. 10, 207CrossRefGoogle Scholar