Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T23:10:47.048Z Has data issue: false hasContentIssue false

Dichotomy of radio loud and radio quiet quasars in four dimensional eigenvector one (4DE1) parameter space

Published online by Cambridge University Press:  29 January 2021

Shimeles Terefe
Affiliation:
Ethiopian Space Science and Technology Institute (ESSTI), Addis Ababa, Ethiopia email: shimeles11@gmail.com
Ascensión del Olmo
Affiliation:
Instituto de Astrofisica de Andalucía (IAA-CSIC), Granada, Spain
Paola Marziani
Affiliation:
Istituto Nazionale di Astrofisica (INAF), Osservatorio Astronomico di Padova, Padova, Italy
Mirjana Pović
Affiliation:
Ethiopian Space Science and Technology Institute (ESSTI), Addis Ababa, Ethiopia email: shimeles11@gmail.com Instituto de Astrofisica de Andalucía (IAA-CSIC), Granada, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent work has shown that it is possible to systematize quasars (QSOs) spectral diversity in 4DE1 parameter space. The spectra contained in most of the surveys have low signal to noise ratio which fed the impression that all QSO’s are spectroscopically similar. Exploration of 4DE1 parameter space gave rise to the concept of two populations of QSOs that present important spectroscopic differences. We aim to quantify broad emission line differences between radio quiet and radio loud sources by exploiting more complete samples of QSO with spectral coverage in Hβ, MgII and CIV emission lines. We used a high redshift sample (0.35 < z < 1) of strong radio emitter QSOs observations from Calar Alto Observatory in Spain.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

Footnotes

Based on observations obtained at the CAHA Observatory, Calar Alto, Spain

References

Chiaberge, M., & Marconi, A. 2011, MNRAS, 416, 917 10.1111/j.1365-2966.2011.19079.xCrossRefGoogle Scholar
Corbin, M. R., 1997, ApJS, 113, 245 10.1086/313058CrossRefGoogle Scholar
Marziani, P., et al., 2018, Frontiers in A&SS, 5, 6 Google Scholar
Marziani, P., et al., 2003, ApJS, 145, 199 10.1086/346025CrossRefGoogle Scholar
Ruff, A. J., 2012, PhDT, 314TGoogle Scholar
Sulentic, J. W., et al., 1995, ApJL, 445, L85 10.1086/187896CrossRefGoogle Scholar
Sulentic, J. W., et al., 2000, ApJL, 536, L5 10.1086/312717CrossRefGoogle Scholar
Sulentic, J. W., et al., 2007, ApJL, 666, 757 10.1086/519916CrossRefGoogle Scholar
Taylor, G. B., et al., 1996, ApJS, 107, 37 10.1086/192354CrossRefGoogle Scholar
Zamfir, S., Sulentic, J. W., & Marziani, P. 2008, MNRAS, 387, 856 10.1111/j.1365-2966.2008.13290.xCrossRefGoogle Scholar